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Abstract 

This paper provides a comprehensive literature review of potential output and output 

gap estimates from the perspective of a fiscal authority and, by extension, an 

independent fiscal institution tasked with assessing cyclically adjusted fiscal 

indicators. Considering the mandate of these institutions, the focus is often broader in 

the sense that more sources of imbalances and longer horizons are considered. Yet it 

is similar to other institutions in terms of the methods used to assess the unobserved 

potential output and the output gap. The paper reviews univariate and multivariate 

trend-cycle decomposition methods that are actually used within the Network of 

European Union’s independent fiscal institutions. It summarizes their salient features 

and provides a critical review of commonly used methods. This literature review 

preludes the back-testing exercise assessing the quality of output gap estimates and 

the discussion of their real-time applied issues in the context of cyclically adjusted 

fiscal indicators. 

JEL references: C50, E27, E32, E62. 

Keywords: output gap, growth cycle, potential output, uncertainty, unobserved component, fiscal 

authority, independent fiscal institution, production function, trend-cycle decomposition. 
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Introduction 

Actual General Government (GG) budget balances are imperfect indicators for assessing public 

finances and the fiscal policy stance as they are affected by a number of temporary and cyclical 

factors that are beyond the direct control of fiscal authorities. In implementing their functions, 

Independent Fiscal Institutions (IFIs) strive to understand the dynamics of the output gap and reveal 

its specific location as it decisively determines the current budgetary stance and its sustainability 

(Cuerpo, Cuevas and Quilis 2018, Casey 2018). It is also important to have a medium-term view as to 

economic growth projections in the context of expenditure planning and GG debt sustainability 

assessments – something that estimates of potential output can help to assess (Casey 2018). Therefore, 

plausible real-time potential output and output gap estimates become an essential prerequisite to 

timely implement required countercyclical fiscal policy measures.   

The source of substantial uncertainty surrounding the cyclical position of the economy primarily 

stems from the unobserved nature of the potential output used to derive the output gap. Such estimates 

are a huge problem especially for a small open economy1 with a short history of data, transitionary 

nature of economic development and many structural breaks (Ódor and Jurašekova Kucserová 2014). 

Lacking an objective benchmark, practitioners from different institutions may disagree on the 

conceptual issues, the theory that defines the potential output and the methods of its assessment. The 

recent economic crisis appears to have made the agreement even more complex (Frale and De Nardis 

2017).  

The practitioners often acknowledge that an estimation of the unobserved potential output and the 

output gap is more an art than a science. Any commonly agreed approach eventually requires 

addressing country-specific issues when applied to the diverse subset of countries such as the EU 

(Ódor and Jurašekova Kucserová 2014). The authors noted that revisiting calculations of the output 

gap in small and open economies is an essential task not only from a fiscal policy perspective 

since policymakers often use this concept also in relation to monetary or structural policies. Very 

volatile estimates of output gap with weak information content can quickly undermine the credibility 

of a fiscal framework and IFIs, which aim to assess the performance against cyclically adjusted 

indicators, or monetary authorities, who target to control the inflationary pressures and/or ensure 

financial stability. 

Although there is an extensive literature on the topic, this paper aims to guide practitioners who wish 

to assess potential output and the output gap from the perspective of a fiscal authority and IFI. This is 

also relevant in terms of implementing the Fiscal Compact’s watchdog function. Considering the 

broad mandate of IFIs the focus often goes beyond inflation in the sense that more imbalances and 

longer horizons are taken into account. Yet it is similar in terms of the methods used to assess the 

unobserved potential output and the output gap. Having this objective in mind, the first section of the 

paper provides a literature review of the conceptual issues surrounding the appropriate definition of 

the output gap for the purpose of assessing fiscal sustainability. The second section reviews the 

                                                      

 

1 A small and open economy is an economy that is small enough compared to world markets that its export volumes and 

trade policies do not alter world prices or incomes. The country is, thus, a price taker in world markets. In that case, the 

export dynamics is determined by the supply-side constraints similar to Holly and Wade (1991): mark-up over marginal 

costs, productive capacity that could be approximated by the potential output of the open sector or the whole economy, and 

the relative export and domestic prices. The concept of small and open economy could also include the financial markets, 

where nominal interest rates (apart from a risk premium) are exogenously driven. The financial balance then may have a 

relevant role in a broad definition of stability. 
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univariate and multivariate trend-cycle decomposition methods that are actually used within the 

Network of EU IFIs summarizing their salient features. The last section concludes and also provides a 

roadmap for further research. 

Conceptual issues 

This chapter concerns the practical and theoretical aspects of potential output and output gap 

definitions. It considers the relevant time horizon, required data, sources of uncertainty, computation, 

and validation issues from the perspective of the fiscal authority and, by extension, of an independent 

fiscal institution. It is particularly relevant for those tasked with assessing performance against 

cyclically adjusted fiscal indicators (Murray 2014). 

 

Minding the gap 

The concept of the output gap is widely used in academic and economic policy debate, though it is not 

uniquely defined and estimation methods can vary widely (Ódor and Jurašekova Kucserová 2014). 

The idea of recurring booms and recessions in overall economic activity is not new and was put 

forward already at the end of the 19th century. A prominent early work in this field is Juglar (1862), 

which considers the link between the credit cycle—variation in productive fixed investments—and 

the economic cycle. In particular, it focuses on the role played by the speculative behaviour of agents 

(contagion effects). The 7 to 11 year cycles observed by Juglar are, perhaps, the closest in terms of 

definition to the modern meaning of the output gap.  

Today almost every economist agrees on the existence of the cyclical fluctuations, but questions 

remain as regards the theory that best explains their causes and nature. A useful classification (Mazzi 

and Ozylidririm 2017) distinguishes cycles in terms of those that are: 

1. self-correcting – mainly the classical theories; 

2. non-self-correcting – (post-)Keynesian approaches allowing for active countercyclical policy 

interventions; 

3. due to policy ineffectiveness – based on neo-classical theories; and 

4. driven by wage and price rigidities – based on new-Keynesian theories. 

Keynesian theory directly considers the active role of fiscal policy and is a central part of modern 

macroeconomics. The classical self-correcting mechanisms fail to adjust both: in aggregate demand 

due to the conventional monetary policy or deflation inability (the liquidity trap); and in aggregate 

supply as a result of rigid wages leading to persistent underemployment equilibrium. Hence, there is 

room for unconventional monetary policy, which can encourage private sector activities even under 

extremely low entrepreneurs’ profit expectations; and countercyclical fiscal policy by direct 

government expenditure, mainly in infrastructure, and taxes (Mazzi and Ozylidririm 2017). The 

Keynesian theory also includes psychological factors (“animal spirits”) as a potential irrational source 

of economic instability, especially concerning investment decisions (Keynes 1936).  

This Guide adopts a specific output gap definition: 

The output gap is a growth cycle – the difference between actual output and potential output 

expressed as a per cent of potential output.  
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It is important to distinguish between the “growth” measure of the cycle (Mintz 1969) or the output 

gap, and the “classical” measure or the business cycle (Burns and Mitchel 1946). The concepts are 

often confused in the literature (Fig. 1). The growth cycle is dependent on the application of a 

particular trend-cycle decomposition method, while the classical cycle is not. Following Burns and 

Mitchel, the classical cycle is defined as aperiodic2, recurrent fluctuations in aggregate economic 

activities of market economies. It relates to a sequence of expansions and contractions in the levels of 

a large set of aggregate macroeconomic variables, including the actual output and employment. 

However, such a definition may not adequately account for economies that experience a fast and 

stable growth path or for small and open (converging) economies. In such cases, it is unlikely that the 

classical definition will detect many cyclical fluctuations. This may simply be because the cyclical 

component will be dominated by the trend. In such cases, de-trending methods can help in making 

fluctuations more visible (Mazzi, Ozylidririm and Mitchell 2017).  

The timing of downturns and upturns can differ in growth cycles and classical cycles. Downturns in 

the growth cycle will usually lead the peak in the classical cycle and vice versa for the upturns and 

troughs, implying that the slowdown phases are typically longer in output gaps than classical cycles, 

hence, the former is more symmetric (Fig. 1). The recent estimates for the euro area show that the 

growth cycle may happen, while the classical cycle is still in the expansion phase, or the classical 

cycle may reach its new peak (W-type P1-T1-P2-T2 of cyclical recovery of the euro area), while the 

output gap is still negative (Fig. 1). Therefore, classical cycles may be relatively less common than 

growth cycles because accelerations and decelerations in growth might occur without a decline in the 

level of economic activity.  

 

 

  

                                                      

 

2 In duration varying from more than one year to ten or twelve years, but not divisible into shorter cycles. 
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Figure 1 – Business, growth and acceleration cycles in the euro area in 2000–2018 

 

 

 

 

 

 

Notes: P and T are peaks and troughs of a business cycle, D and U denote downturns and upturns in the growth of a growth cycle. 

Acceleration or growth rate cycle is determined by the growth rate of the actual output (e.g. real GDP). A peak point of the classical 

cycle then is defined in the place where the acceleration cycle changes its sign from positive to negative, while a trough – from negative 

to positive. A growth cycle is defined as the difference between actual output and potential output expressed as a per cent of potential 

output. 

Source: European Commission’s 2018 spring forecast 

Practitioners often acknowledge that an estimation of the unobserved potential output and the output 

gap is more of an art than a science. Facing such unobserved components is like “finding Yeti” (Ódor 

and Jurašekova Kucserová 2014), questioning “which gap” (Frale and De Nardis 2017), or “who 

holds the potential” (Constantinescu and Nguyen 2017) and often leads to a “beauty contest” or 

“horse race”-like choices (Cuerpo, Cuevas and Quilis 2018). Using indirect evidence at best, the 

researchers are seeking to assess the uncertain cyclical position of the economy.So how does one 

define unobserved potential output and the output gap? 

The concept of potential output may be viewed from different perspectives (Anderton, et al. 2014).  

• First, it could be associated with particular methods and the amount of theory being put into 

its development. In this sense, there are “statistical” univariate filters; semi-structural 

multivariate filters (Melolinna and Tóth 2016); and structural models (e.g. production 

function approach). The first category rests on very limited economic theory, if any at all, and 

assumes that it is possible to filter out cyclical fluctuations from the data (Ódor and 

Jurašekova Kucserová 2014).  

• The second category can be associated with multivariate unobserved components models. 

These partly rest on either Phillips curve concepts of short-run zero inflationary pressures or 

“beyond-inflation” long-run sustainability concepts.  
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• The third view on the potential output originates from the structural model of the supply side 

or the economy’s capacity to produce, where potential output in the economy is determined 

by a production function (e.g., Cobb-Douglas or CES)3. Murray (2014) defines potential 

output as being dependent on how many people are available to work and how many hours 

they are willing to put in (labour); the number of buildings, machines and computers that are 

available to work with (productive capital); and the efficiency with which they can be 

combined (total factor productivity).  

Following Ódor and Kucserová (2014) and Casey (2018), in this paper, we define the potential output 

in a pragmatic way as:  

a maximum level of output sustainable in the medium to long-run, where “sustainable“ implies that 

output, when at its potential, is not unduly influenced in any particular direction by imbalances in the 

economy, be they external, internal or financial.  

This view is broader than simple statistical de-trending methods or inflation-based models. For 

example inDSGE4 models potential output conventionally follows from Phillips curve and simple 

Okun‘s law concepts referring to the maximum feasible level of output without inflationary pressures 

(Okun 1964). The practice has shifted from a narrow balance concept (internal) to a broader one 

(internal, external and financial) driven by the experience from 2007–2008. This broader view is 

essential for fiscal authorities to correctly remove all cyclical fluctuations that are beyond their direct 

control while producing the corresponding structural fiscal indicators. Therefore, practitioners 

consider other variables beyond inflation that help to better filter out underlying trends highlighting 

imbalances in other markets. Financial cycles (Benetrix and Lane 2011, Borio, Disyatat and Juselius 

2017), absorption cycles (Lendvai, Moulin and Turrini 2011, Darvas and Simon 2015) or commodity 

price cycles (Bornhorst, et al. 2011) are among the most recently discussed candidates.  

Prospecting the future 

The fiscal authorities setting their spending plans are more concerned about sustainability, focusing 

on the medium to the long-term concept of fiscal space and imbalances that might influence budgetary 

position. Havik, et al. (2014) provide a comprehensive generalisation of the potential output concept 

regarding how far the authority plans its corresponding policy actions: 

• In the short run, the physical productive capacity of the economy may be considered quasi-

fixed. Its comparison against actual or technologically effective output reveals by how much 

aggregate demand can rise in the short period without inducing supply constraints that lead to 

inflationary pressures, in line with Walrasian view on how markets move towards equilibrium 

by adjusting the prices, keeping quantity supplied (real output) almost unchanged. 

• In the medium run, the dynamics of aggregate demand when supported by corresponding 

changes in the number of productive investments and favourable demographic development 

may endogenously induce the changes in capacity needed for its own support. The latter is 

                                                      

 

3 In many actual applications the production function approach involves the use of statistical univariate or multivariate 

filters, hence could be also considered as a semi-structural one.  
4 Actually in DSGE models there exist two notions of the output gap related to New Keynesian Philips Curve (NKPC). The 

first is the “natural” level of output that would prevail under flexible prices under imperfectly competitive markets. Another 

is the “efficient” level of output that would prevail if both goods and labour markets were perfectly competitive, implying 

that the output gap considers both imperfect competition and nominal rigidities (Vetlov, et al. 2011). 
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likely linked to the expected profitability and adequate medium run wage dynamics with 

respect to labour productivity. This view is in line with the Marshallian interpretation of 

market driving forces – changing the number of primary factor inputs (labour and capital) 

implies output adjustments, whilst the technological progress (total factor productivity) 

remains almost unchanged. 

• In the long run, the potential output is driven by a neoclassical Solow-Swan type exogenous 

growth model that is dependent on the demographic trends, especially of the working age 

population, and the dynamics of technological progress (or total factor productivity).  

The medium and long run views correspond to the “beyond-inflation” concept of the potential output, 

where the output gap is defined as the difference between the actual output and a steady state 

(sustainable) growth path, without any explicit reference to inflation (Melolinna and Tóth 2016). The 

difference of this broader view from (dis)inflationary concept is seen in Murray’s (2014) example, 

where the central bank, in-line with duration theories, takes into consideration that long-term 

unemployed may exert less downward pressure on wages over the recessions (Blanchard and 

Summers 1987). Hence, constructing the growth cycle estimates is consistent with time-varying 

medium-term equilibrium rate (like NAIRU or NAWRU) and may improve the accuracy of inflation 

projections.  

Over a longer time horizon, however, the long-term unemployed may well  return to employment. 

Unless unemployment hysteresis prevails (Blanchard and Summers 1987), from membership theories 

perspective, then one could assume that automatic stabilizers will improve the corresponding fiscal 

indicators. In such cases, a government might be expected to conduct proactive discrete labour policy 

measures. Murray (2014) points out that, when long-term unemployment is still high, inflationary 

pressures may subside before the public finance fully recover. Therefore, a relevant cyclical 

correction of government finances has to be consistent with the long-term structural rate of 

unemployment. This consistency could be achieved, for example, by carefully choosing the long-run 

anchors, while applying the production function approach, or by judgements surrounding smoothing 

parameters of univariate and multivariate filters.  
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Requiring data 

The data used for output gap estimation comes from several sources. The data used mostly originates 

from National statistical agencies (Fig. 2). Some of the data series are own IFI’s calculations or are 

taken from European Commission’s database AMECO, which includes Eurostat data. AMECO is a 

useful primary source of data vintages for IFIs that have not stored the data series or produced their 

own estimates of the output gap5.  

The available vintages of output gap estimates within the Network resemble the actual lifespan of EU 

IFIs. A few older members having vintages dating back to the pre-crisis period, while vintages of the 

new IFIs start mostly from the post-crisis period 

with hikes in 2010 and 2015. The data sample 

may start from 1970 as in Denmark, Ireland or 

the UK, 1980 in Spain, but is limited to begin in 

1995 or 1999 for the most of the EU countries. 

This can mean that the data samples are 

sometimes relatively short (covering one to two 

classical cycles) for the purposes of determining 

long-term trends, and ssmpled may include many 

structural breaks (Ódor and Jurašekova 

Kucserová 2014).  

The data frequency is either annual or quarterly. 

Seeking to exclude seasonal impacts, in the 

quarterly case, the data is adjusted for seasonally 

and calendar effects either by official statistical 

agencies or by own IFI calculations applying, for instance, TRAMO-SEATS method (Gómez and 

Maravall 1996). Quarterly estimates are aggregated to annual frequencies using the average for level 

variables and the summation for flows. Mostdata, aside from some rates and ratios, are included in a 

logarithmically transformed form. We will conventionally denote transformed variables as 𝑥𝑡 =

log𝑋𝑡, while 𝑋𝑡 will correspond to actual seasonally and calendar adjusted series. 

The quality of the potential output estimates is largely determined by an appropriate macroeconomic 

aggregate for perceiving the cyclical position of the economy (Casey 2018). Bearing in mind country-

specific features, the IFIs often scrutinize an appropriate measure of actual output. The default option 

is real GDP data. However, alternative real gross national income (GNI) or gross value-added (GVA) 

measures might be usedand can be expressed in per capita terms and/or net of certain components. In 

some cases, this can help to better match the salient features of a particular economy (Murray 2014). 

Such alternatives tend to consider sectors of the economy that are not influenced by the country’s 

domestic resources. Examples of sectors removed for the estimation of potential outputmin practice 

include oil production in the UK (Murray 2014) or the value-added produced by large foreign-owned 

multinational enterprises, which are not very integrated with the domestic economy,  in Ireland 

(Casey 2018). The latter exclusion is equivalent to an assumption that the omitted sectors always 

operate at a technologically efficient full capacity so thatthe output gap is assumed to be driven 

primarily by domestic developments.  

                                                      

 

5 An additional source of vintages for actual output, inflation and current account balances are published in IMF World 

Economic Outlooks. 

Figure 2 – Data sources used for estimation  

 

 

Source: the Network of EU IFIs 
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Aside from output aggregates, IFIs may also explore the inclusion of a number of additional 

observable variables in a multivariate setting and while applying a production function approach. The 

selection of potential candidates could follow an encompassing approach such as in Cuerpo, Cuevas 

and Quilis (2018). This classification covers—in line with a broad potential output concept sense—all  

relevant sources of imbalances: (i) domestic demand; (ii) external sector; (iii) prices; (iv) labour 

market; (v) financial sector and asset prices; (vi) fiscal conditions. The relative ease of replicability of 

the data set for different countries allows a practitioner to reflect different sources of imbalances that 

may underpin growth cycles. This motivated the selection of similar groups (with the only difference 

that (i) and (ii) were joined into GDP and output category) of variables and vintages of data for other 

members of the Network of EU IFIs to be used in the back-testing exercise (Appendix A). 

The GDP and output category of variables include coincident and leading indicators that complement 

the corresponding aggregate measures of economic activity. Measures considered include the current 

account balance; output surveys; gross national savings; housing completions; real investments in 

equipment/machinery and investments in construction; net capital stock (probably excluding 

dwellings); new car registrations; and a measure of capacity utilisation.  

The inflationary channel is defined either by the GDP deflator, CPI inflation or more domestically 

aligned CPI subcomponents. The latter may, for instance, include: core inflation – CPI inflation net of 

food and energy prices (Jarociński and Lenza 2016); or services inflation that might more closely 

represent the non-traded element of domestic inflation (Casey 2018). This block of variables could 

also include explicit data for inflation expectations as a component of NKPC corresponding models.  

The non-inflationary concepts of potential output tightly relate the price block variables with the third 

block on labour market developments, in particular with an unemployment rate and the corresponding 

unemployment gap. For the labour input in production function approach a decomposition into the 

total population, participation rate and average hours worked is required, whilst nominal earnings 

growth is a key determinant of unit labour costs (cost-push inflationary factor). This block of 

variables might also include data on recruitment difficulties and labour force mobility captured by net 

migration.  

Following Borio, et al. (2017) a financial channel and monetary policy impacts are represented by a 

battery of financial market and assets indicators, although the conclusions regarding their relevance 

are rather mixed. In these applications practitioners consider various credit and commodity price 

cycles associated variables: credit growth (could be separated into credit to households and to non-

financial corporations); real interest rates; real effective exchange rates; house prices; asset prices; oil 

prices; and money supply in the narrow (M1 aggregate) and broad (M3 aggregate) sense. 

The final block of variables considers the (past) fiscal policy impacts on the cyclical position of the 

economy and covers: net lending or borrowing of the general government; public sector debt; and 

general government receipts and spending or their corresponding subcomponents (taxes and 

unemployment benefits), which are a subject of cyclical adjustment.  

Accommodating uncertainty 

The output gap—as the growth cycle—is an unobserved object.  It is constructed by analysts to better 

understand the cyclical fluctuations in the economy and to help to inform an adequate counter-cyclical 

policy in a timely manner. Murray (2014) argues that it is not the type of data which could be 

retrieved with certainty, even with the benefit of hindsight. Hence, frequent and substantial revisions 
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of potential output estimates are often the rule rather than the exception (Ódor and Jurašekova 

Kucserová 2014). 

The output gap, by definition, is the difference between two variables: actual output and potential 

output. The actual output is officially measured by the statistical agencies and, hence, is observed. 

Being a statistical estimate itself, however, the actual value of output is uncertain and is a subject of 

further revisions. Therefore, the output gap is surrounded by considerable uncertainty originating 

from both the observed data revisions and the unobserved potential output estimates. This uncertainty 

can be characterized by three main sources (Murray 2014, Blagrave, et al. 2015, Mazzi, Ozylidririm 

and Mitchell 2017): 

• Model uncertainty. The notion of potential output is tightly related to the variety of methods 

of its assessment and the uncertainty regarding estimated or calibrated parameters, including 

hyper-parameters for filters. Many alternative econometric methods used to conduct trend-

cycle decomposition can produce a range of estimates. This mightprovide a rationale for 

model-averaging or interval predictions as discussed below. This should be done taking into 

account (1) “within” model uncertainty – a density surrounding the point estimates of the 

output gap for a selected method, and (2) “between” model uncertainty – the range of point 

estimates from different models for a given period of time. It is crucial to recognise that, even 

for a single method, (“within”) uncertainty in real time could be huge. A limited IFI practice6 

is to consider just “between” model uncertainty constructing either arithmetic average 

(Murray 2014, Ódor and Jurašekova Kucserová 2014); weighted average, where the choice of 

the weights is based on expert judgement; or mid-ranges (Casey 2018) of the point estimates 

obtained from different models. Drawing on the forecasting literature, a useful way to 

conceive of the differences is in terms of model uncertainty (i.e., within uncertainty), and 

model disagreement (i.e., between uncertainty). 

• Data uncertainty arises because (1) the statistical information available is not the final vintage 

of the data and (2) the data definition can change substantially (e.g., high uncertainty to 

estimate capital input). The problem is more prominent for small and open catching-up 

economies dealing with short-time series to estimate long-term trends with many structural 

breaks. Some methods will be less sensitive to this source of uncertainty than others, 

depending on which revisions attribute more to changes in potential output or the output gap. 

In general, a richer structural model is expected to be more sensitive to data revisions than a 

simpler method. 

• End-of-sample uncertainty is crucial for policymakers as the policy decisions require cyclical 

estimates in real-time. The real-time estimates are, however, conditional on incomplete 

information regarding future data revisions as well as on the uncertain projections of certain 

economic indicators. The latter is a more relevant issue for univariate, purely statistical filters 

than for semi-parametric models estimated by Kalman filter7 (Kalman 1960). Most univariate 

filters imply a smooth two-sided moving average in the middle of the sample, while at the 

ends of the sample the filter becomes, first, asymmetric and then one-sided. Since the 

                                                      

 

6 Only 3 of 20 respondents of the survey of the Network of EU IFIs conducted in October 2017, mentioned the use of model 

averaging. 
7 A state-space representation of univariate filters could be also solved by Kalman approach. It is the absence of additional 

information including the explicit model for cycle makes the real-time estimates by statistical filters biased and the errors 

huge. 
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revisions of one-sided filters are huge, seeking to apply the two-sided filter at the end-of-

sample the future values of variables are projected. Any revisions in these projections hence 

will translate into end-of-sample uncertainty. For the unobserved components models, the 

end-of-sample uncertainty becomes relevant if the model is misspecified.  

All these types of uncertainty will be at the heart of back-testing exercise. The effect of data revisions 

and end-of-sample uncertainty are assessed by comparing the real-time and ex-post estimates for a 

variety of the methods; while model uncertainty is reflected in the range of output gap estimates 

produced by different methods (Murray 2014, Casey 2018, Cuerpo, Cuevas and Quilis 2018). 

Assessing performance 

Since the potential output of the economy is an unobserved ingredient of the output gap, a practitioner 

is not able to measure the accuracy of the trend-cycle decomposition, even ex-post (Murray 2014). 

While economic theory or more structural models are believed to highlight the “true” data generation 

processes for trend-cycle decomposition, in fact, there is also a significant uncertainty on what the 

“right” economic theory should be applied (Mazzi, Ozylidririm and Mitchell 2017). The absence of 

observable targets or benchmarks with which to compare any estimates produced complicates the 

assessment of different output gap estimation methods. Therefore, in practice, the fiscal authorities 

and IFIs have to agree on a set of desired attributes that a preferred method is expected to possess.  

There are a number of desiable attributes of output gaps. Murray (2014), Ódor and Kucserová (2014) 

among others emphasize two features: the stability of the real-time estimates in the sense of small ex-

post revisions at the end-of-sample; and the plausibility of the estimates when new data arrives. To 

maintain the credibility of the output gap estimates in the fiscal framework context, it is recommended 

to avoid hikes in the revisions of the output gap estimates, especially in the short-term horizon8. This 

is why the end-point stability has to be a primary concern for the EU countries (Darvas and Simon 

2015). On the other hand, it is not reasonable to rank the output gap estimation methods simply on 

their tendency to be revised. An extreme illustration of this is the fact that athe method that always 

sets potential and actual output equal at all points in time will imply an always zero-valued output gap 

that will never be revised (Murray 2014). Such a method, however, is clearly inconsistent with 

economic theory. Among other things, it would implicitly assume that unemployed never return to 

work. Moreover, there is no point in favouring an unchanged output gap value when it is at odds with 

empirical evidence, and when hindsight underscores the country-specific trade-off between the 

stability and plausibility features.  

To test the stability of output gap estimates, Casey (2018) and Turner, et al. (2016) suggest examining 

three measures: (i) the Mean Absolute Revision (MAR); (ii) the Maximal Revision (MR); and (iii) the 

number of sign changes observed. The revisions could be calculated in different ways and compared 

using different vintages of output gap estimates. According to the survey of the EU IFIs, the output 

gaps often are estimated twice per year correspondingly in spring (S) and autumn (A) updates. 

Therefore, a practitioner can test the revision within the same year, comparing A and S estimates; 

period-to-period updates on a semi-annual basis; year-to-year updates comparing either SS or AA 

revisions; and to compare any value with the latest (L) known estimate. The bulk of the analysis of 

                                                      

 

8 Ódor and Kucserová (2014) explain this in terms of deviation from the medium-term objective (MTO), where a significant 

deviation in one year is defined as 0.5 per cent in one year or 0.25 per cent on average for two years. Therefore, the preferred 

method should be relatively stable at least for one year. 
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revisions is paid to the end-of-sample revisions, where the projected data is often used. Actual data 

and model revisions are the key drivers of the output gap revisions in the middle-of-sample and 

illustrate realized in-sample uncertainty of the selected method.  

In general, if t denotes time (a year or spring/autumn updates of the year), and i is the corresponding 

update of the output gap estimate 𝑥𝑡,𝑖 for a given year t, then a revision is defined as: 𝑅𝑡 = 𝑥𝑡,𝑖 −

𝑥𝑡,𝑖−𝑘, where 𝑘 is an integer higher than 1 and depends on the chosen comparison. A distribution of 

the revisions 𝑅𝑡 depicted, for instance, as a box-plot, a histogram or a density plot would illustrate 

then the descriptive statistics of the revisions for different methods without significant loss of 

information. Another option is to analyse the absolute value of the revision 𝐴𝑅𝑡 = |𝑅𝑡| that shows the 

amplitude of revisions ignoring their direction or the final absolute revision 𝐹𝐴𝑅𝑡 = |𝑥𝑡,𝑛(𝑡) − 𝑥𝑡,1| 

that highlights the differences between the first and the last values of the output gap estimates. Any 

descriptive statistic – an often the choice is mean and max values – of the absolute revisions is then 

used for the comparison of methods (Casey 2018). Revisions could be also defined in relative terms as 

the average distance between one-sided and two-sided estimates (or the mean final absolute revision if 

the latter are not available), relative to the maximum amplitude of the estimate (Cuerpo, Cuevas and 

Quilis 2018). 

Since the fiscal rules are often dependent on the sign of the output gap, a supplementary characteristic 

of the stability is the number of sign changes from positive to negative and vice versa, comparing 

different vintages of the output gap estimates (Casey 2018). In a similar way, one could explore the 

ability of different methods to detect turning-points (Mohr 2005).  

Another conventional evaluation criterion is to choose the reference economic theory based on the 

objectives of the policy applied either by the monetary or fiscal authority and the ability of the method 

to predict the theory based outcomes (Murray 2014). For the central banks and some IFIs (Frale and 

De Nardis 2017, Casey 2018), the estimates of the output gap then could be assessed on their ability 

to predict inflation, explaining the cyclical element that arises from the demand pressures. For fiscal 

authorities and IFIs as fiscal watchdogs, a reasonable metric might be the ability of the output gap 

estimates to explain the cyclical variations in the public finances (or the imbalances in the broader 

sense). However, the bottleneck in such reasoning is the circularity9 of the trend-cycle decomposition 

– how a practitioner could define the cyclical parts of the inflation or the fiscal balance without the 

estimates of the growth cycle? As a result, for instance, the inflation targeting output gap estimates 

could place the methods based on the Phillips curve (undeservedly) high (Murray 2014). Hence, it is 

reasonable to judge the methods by considering the general plausibility of the output gap estimates – 

an intuitive “smell” test or country-specific narrative approach (Casey 2018, Cuerpo, Cuevas and 

Quilis 2018), keeping an eye on the descriptive statistics of their revisions.  

Mazzi, Ozylidririm and Mitchell (2017) stress that a comparative analysis among different detrending 

techniques only makes sense for the same family of methods, otherwise, the underlying definition of 

the “cycle” is very different. Besides, the methods which aim at extracting cycles (high-pass, band-

pass filters) will typically introduce smoother cycles than those aiming to extract smoother trends 

                                                      

 

9 Martti (2015) argued that the potential GDP estimates are dependent on projections, which themselves typically depend on 

the cyclical phase, i.e. the potential GDP (and the output gap) estimates are pro-cyclical. As the cyclically adjusted budget 

balance (CAB) depends on the elasticity of the output gap, one can show that, with given nominal budget balance change 

and given GDP growth, the change of cyclically adjusted budget balance depends on the change of the potential GDP. Thus, 

whenever estimates of the potential GDP projections depend on the cycle the interpretation on the fiscal policy stance (as a 

change of CAB) will depend on the cycle too. 
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(low-pass filters), which is a typical outcome for the methods without explicitly defined irregular 

component (1). Indeed, the latter is allocated either to trend or cycle making the focus component 

smoother, while the residual more volatile.  

Bearing all these aspects in mind, a comprehensive selection approach on how a “beauty contest” 

among different models could be organized is provided in Cuerpo, Cuevas and Quilis (2018). First of 

all, the contest is organized for the models within the same class of unobserved components methods, 

which are cast in the state-space form. Notice, that widespread filters, such as Hodrick-Prescott filter 

or Beveridge-Nelson decomposition, belong to the same class of methods and admit a state-space 

representation. Then the authors split the selection criteria into two categories: the statistical-based 

ones define the necessary (N) conditions, and the economically and policy-oriented ones underline the 

sufficient (S) conditions. The criteria listed in Table 1 form the core of the back-testing exercise. 

Table 1 – Necessary and sufficient selection criteria. 

Criterion Description  

N1 Statistical significance of the coefficients, focusing on the loadings of the observables on the 

cycle. 

N2 Average relative revision, defined as the average distance between one-sided and two-sided 

estimates, relative to the maximum amplitude of the output gap estimate. 

N3 Average relative uncertainty surrounding the cycle estimates, as the average standard error 

relative to the maximum amplitude. 

S1 Economic soundness, meaning that some key macroeconomic relationships could be captured 

by variables if included in the model (e.g. Okun’s Law, Phillips Curve, etc.). 

S2 The amplitude and profile alignment with consensus figures (range given by a panel of official 

institutions) and in agreement with commonly accepted business cycle chronology (e.g. ECRI 

dating). The quantification of the profile alignment can be made by means of the cross-

correlation function and different measures of conformity. 

S3 Stability of the one-sided cycle estimate, as this would mimic the practitioner’s need for 

updated estimates as new data is added in real time. Stability can be measured using the 

revisions of the one-sided estimates. 

Source: Cuerpo, Cuevas and Quilis (2018). 

The necessary criterion N1 could be also extended by the requirement of stability of parameter 

estimates, measured in terms of the number of observations necessary to achieve stable parameters 

(Frale and De Nardis 2017). 
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Computing without pain 

Dissemination of the codes and sharing the best practices within the Network of EU IFIs require the 

use of the similar software. Roughly speaking, 

any statistical package or programming language 

capable to work with the vectors and matrices 

could be used.  

The commonest software used by the EU IFIs for 

the assessment of the potential output and the 

output gap is E-Views and MS Excel (Fig. 3), 

where for the latter the required statistical 

algorithms are either coded directly with a help of 

visual basic (VBA) or the spreadsheets are 

integrated with Matlab or R. Matlab and R are 

often considered as the second best choice. 

Besides, 9 of 20 respondents noted that they 

consider the European Commission CAM 

Toolbox (Havik, et al. 2014) to replicate the 

output gap estimation. 

In order to integrate the whole estimation process and to be able to consider the different variable 

combinations, Cuerpo, Cuevas and Quilis (2018) suggested designing an Excel platform that 

integrates the database, the estimation functions in Matlab and a stability analysis (back-test). In 

similar applications by other IFIs, an Excel platform is integrated with E-Views, R or the 

corresponding algorithms are coded directly with VBA. Noteworthy, the graphical and computational 

capabilities of Matlab and R are similar, not to mention that it is straightforward to adopt the code 

written for Matlab to R and vice versa. Yet R is an open source software, which is easy to distribute 

and share with all interested parties increasing the transparency of the methods been used for the 

output gap assessment. 

Assessing practical attractiveness of different estimation approaches Casey (2018)  assesses the 

computational complexity of the estimation processes involved. Complexity could be a useful 

predictor of the likelihood that some computation errors may happen, not to mention a growing 

probability of system errors occurring as more complex and structural systems of equations are 

developed with many unknown parameters (a statistical definition of a model complexity). In the field 

of computer science, one useful approach to testing the complexity of an algorithm involves 

examining the number of statistical operations involved. This is relatively straightforward for a 

practitioner to investigate, given that models are often coded in the same software package (Matlab, R 

or E-Views) so that the operations employed are comparable. One can count all of the statistical 

operations (operational commands) used (e.g., sample selection, arithmetic, comparisons, accessing 

array’s elements, assignment (Casey 2018)). For instance, Casey (2018) showed that the production 

function approach based on the CAM toolbox and replicated in E-Views required more than 160 such 

operations, while the number of operations required for univariate/multivariate filters and unobserved 

components models varied from 10 to 34. Though costly from a computational perspective, due to the 

number of procedures involved, mid-ranges or averages of a suite of model estimates can reduce the 

likelihood of output gap estimates being misspecified due to the properties of model averaging.  

 

Figure 3 – Software used for estimation  

 

 

Source: the Network of EU IFIs 
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Estimating the Output Gap 

This section considers the different potential output and output gap estimation methods focusing on 

the main challenges in their application. Each of the methods entails some arbitrary decisions and 

comes with its own advantages and drawbacks. These depend on the required information set, 

filtering technique, economic rationale, statistical properties, and objectives of the analysis 

(Bouthevillain, et al. 2001). By definition, a detrending method is the decomposition of a time series 

𝑦𝑡 (log of actual output) into a trend part 𝑦𝑡
∗, a cyclical part 𝑐𝑡 and an irregular shock 𝜀𝑡 that can be of 

varying magnitude and direction: 

𝑦𝑡 = 𝑦𝑡
∗ + 𝑐𝑡 + 𝜀𝑡 , ∀𝑡 = 1,… , 𝑇, (1) 

where 𝑡 denotes time, the trend component 𝑦𝑡
∗ is interpreted as the potential output, while the cyclical 

component 𝑐𝑡  is identified as the output gap. The decomposition (1) corresponds to the notion of a 

growth cycle, where the actual level of output should hover around the level of potential output, with 

deviations being contained and limited in time.  

Trend-cycle decomposition methods could be grouped into several overlapping categories 

highlighting their particular properties: (a) parametric, semi-parametric and non-parametric; (b) 

univariate and multivariate; (c) statistical, semi-structural and structural; (d) linear and non-linear.  

 

Box 1. An overview of the potential output methodologies used within the Network of EU IFIs 

Most members of the Network of EU IFIs (15 of 20 respondents) produce their own independent 

estimates of potential output and output gaps, typically twice per year. There are two conventional 

methods to estimate the potential output: Hodrick-Prescott (HP) filter and a production function 

approach (Fig. 4). Some advanced applications also cover univariate or multivariate unobserved 

components models and the principal components analysis (PCA). Currently, only 3 EU IFIs that 

participated in the survey mentioned the application of the combinations of output gap estimates 

produced by different approaches or sources.  

Figure 4 – Potential output estimation methods within the Network of EU IFIs (left), other 

sources of output gap estimates (right) 

 

 

Source: the Network of EU IFIs 
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some cases, output gap estimates used are sourced from the OECD and the IMF (Fig. 4). All these 

alternative sources mostly apply the same two prevalent methods: the production function approach 

and/or HP filter. 

In what follows we will focus on a short description of the methods actually used at least by one 

member of the Network of EU IFIs (Box 1) focusing on the economic soundness, the statistical 

goodness of fit and the transparency of computation (an optimality triplet suggested in Cuerpo, et al. 

(2018)). The first subsection considers purely statistical univariate methods – those that utilise just the 

output series. The next subsection covers semi-structural multivariate refinements, which make use of 

more than one variable: multivariate unobserved components models and principal component 

analysis. The third subsection will discuss the production function approach as applied in the 

European Commission’s CAM and the best practice of application within the Network of EU IFIs. 

Then, we will turn to a few cases of the model averaging application that often lead to desired 

properties of the output gap estimates. The final subsection compares the methods and concludes the 

literature review. 

Going alone 

The least data-greedy detrending approach is to exploit only the information content of actual output 

data. This approach is purely statistical in nature and is categorised as a univariate since it does not 

involve other determinants than actual output. The simplicity comes at the cost of limited economic 

content if any at all – the univariate methods do not incorporate potentially useful information derived 

from other variables. Another drawback is the substantial amount of the end-of-sample uncertainty 

that leads to procyclical (biased towards trend) and unstable assessment of the output gaps that 

undermines the use of the methods in real-time applications, especially for the small and open 

economies or the economies with many structural breaks, where structural breaks may be spuriously 

smoothed to an unreasonable degree (Ódor and Jurašekova Kucserová 2014, Hamilton 2017).  

Ódor and Kucserová (2014) consider the most popular non-parametric univariate techniques. Among 

these, they list the HP filter, the Kalman filter (KF), Baxter-King‘s band-pass filter and its 

generalization Christiano-Fitzgerald filter; and the parametric Beveridge-Nelson decomposition. 

Mazzi, et al. (2017) and Murray (2014) also mention a parametric linear detrending probably with 

structural breaks. However, the practical relevance of deterministic trends in macroeconomic data 

omitting a stochastic part, not to mention the real-time assessment of structural breaks, is low. Hence, 

the latter method if not accomplished with the stochastic counterpart is often disregarded from the 

suite of models as implausible. Other univariate filters in use within the Network of EU IFIs include 

the prior consistent (PC) filter proposed by Laxton, et al. (1998), and the trend-cycle (TC) 

decomposition pioneered within the Eurosystem by Mohr (2005). 

Hodrick-Prescott filter 

The most prevalent univariate method among EU IFIs (Fig. 4) is the Hodrick-Prescott filter (Hodrick 

and Prescott 1997). The practical attractiveness of the filter is its computational simplicity and 

transparency. At the same time, the method is frequently criticized in the academic literature (see 

Hamilton (2017) among others). Hamilton criticises what are seen as implausible assumptions on the 

prior data generating process; severe end-of-sample distortions that challenge the use of HP filter for 

real-time applications; and, last but not least, the arbitrary choice of the smoothing penalty parameter 
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that is vastly at odds with the statistical formulation of the problem. On top of that, Bouthevillain, et 

al. (2001) points to the structural breaks problem. Namely, that HP filters (as with any other two-sided 

moving average) are not able to detect sudden breaks in trends in real-time, e.g., in the course of the 

recent recession in 2009. A practitioner must be aware of the possibility of spurious dynamics in the 

output gap being implied as a result of all these distortions.  

HP filtering problem rests on two assumptions (Murray 2014):  

• an actual output does not deviate too far from its trend level (the output gap is not too big); 

• the growth of the potential output is relatively smooth (the potential output is not too volatile).  

The trade-off between these assumptions is formulated as the minimisation problem10 in the squared 

loss function of the output gap with respect to 𝑦𝑡
∗ and subject to a constraint that penalizes 

(de-)accelerations in the growth rate of the potential output (Pedersen 2002): 

min
{𝑦𝑡
∗}𝑡=1
𝑇
∑(𝑦𝑡 − 𝑦𝑡

∗)2 

𝑇

𝑡=1⏟        
goodness-of-fit

+ 𝜆∑[(𝑦𝑡+1
∗ − 𝑦𝑡

∗) − (𝑦𝑡
∗ − 𝑦𝑡−1

∗ )]2 

𝑇−1

𝑡=2⏟                      
degrees-of-smoothness

, 𝜆 =
𝜎1
2

𝜎2
2 > 0, (2) 

 

where 𝑦𝑡
∗ is the unobserved potential output, 𝑦𝑡 is the observed actual output, 𝜎1

2 is the variance of the 

output gap, 𝜎2
2 is the variance of the trend growth dynamics, and 𝜆 is a positive penalty parameter 

(Lagrange multiplier) that places a relative weight on the output gap “goodness-of-fit” and potential 

output “degrees-of-smoothness”. When the smoothness penalty approaches zero (𝜆 → 0), potential 

output estimates are forced to adhere to the actual output, i.e., the loss function’s value is exactly zero 

and the output gap vanishes. Whereas when it tends to infinity (𝜆 → ∞) the HP filter approaches a 

regression on a linear time trend, for which the second difference is exactly zero, implying all above-

mentioned practical implausibility of the parametric linear de-trending. Therefore, the crucial question 

for the practitioner is what is a reasonable (though still arbitrary) choice of penalty 𝜆 to apply, which 

will directly influence the outcome of the trend-cycle decomposition (Box 2). 

Box 2. The Value of Penalty λ 

The value of the penalty parameter 𝜆 is the only explicit choice associated with the application of 

the HP filter. The penalty parameter is a source of significant debate in the literature about its 

proper value, however, and there is no definitive way to choose or calibrate the optimal value of 𝜆.  

Ideally, the choice of the penalty parameter 𝜆 might reflect prior knowledge of the cycle length 

(Mohr 2005). However, the output gap, when defined as aperiodic recurrent fluctuations, does not 

provide any particular guidance as to what might be an empirically appropriate length of a cycle for 

a particular dataset and for a specific period of time. Besides, the choice of 𝜆 affects both the size of 

the cycle and the volatility of the trend – a direct consequence of the cycle in the HP filter 

framework not explicitly following any particular model. The problem becomes more visible at the 

end of a sample, when a new data point has to be allocated either to trend or cycle, even if it is an 

                                                      

 

10 For simplicity of notations it is convenient to express objective function of (2) in the matrix form (Laxton and Tetlow 

1992, Butler 1996, Mohr 2005): (𝑌 − 𝑌∗)′𝑊𝑐(𝑌 − 𝑌
∗) + 𝜆𝑌∗′∇2

′
∇2𝑌∗, where 𝑌 and 𝑌∗ are 𝑇 × 1 vectors of actual data and 

trend and ∇2 denotes the second difference matrix. The form is convenient to include additional assumptions on the relative 

importance of particular periods of time via matrix 𝑊𝑐 (default assumption is a unity matrix I) and to add additional 

restrictions. For instance the sought solution to the HP minimization problem will be 𝑌∗ = (𝐼 + 𝜆∇2
′
∇2)

−1
𝑌 and therefore is 

easy to program. For more details on lag and difference operators in matrix form see Appendix A in Mohr (2005). 
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outlier.    

The choice of penalty parameter often reflects a general consensus. For example, common practice 

is to use a 𝜆 value of 1,600 for quarterly data and 100 for annual data as initially suggested by 

Hodrick and Prescott (1997). The authors argued that a 5 per cent deviation from trend (the output 

gap) is as moderate as the eighth percentage acceleration per quarter in the trend component. If the 

cycle and the acceleration in trend are mutually uncorrelated and normally distributed white noise 

processes, the solution to the minimisation problem (2) will be an optimal filter if and only if the 

parameter 𝜆 is equal to the inverse signal-to-noise variance ratio, i.e. 𝜆 = 𝜎1
2 𝜎2

2⁄ = 52/(1/8)2 =

1600 . These prior assumptions, however, are often violated in practice. Therefore, the HP filter 

might be interpreted not as an optimal filter, but rather as an approximation to an ideal infinite 

moving average (Pedersen 2002). Going from quarterly reasoning to annual, Ravn and Uhlig 

(2002) asserted that the default quarterly value is inconsistent with a 2nd order frequency conversion 

factor that results in value of 100 for annual data and provided frequency-domain arguments for 4th 

order frequency conversion leading to 6.25–8.25 recommendations11. Pedersen (2002), based on an 

optimal approximation of an ideal filter, argued for a value 1000 for quarterly data in the euro area 

and 3–5 for annual data, while in Bouthevillain, et al. (2001) the filter is applied with 𝜆 = 30 to 

annual data. From the IFIs point of view higher values of the penalty are preferable as they are 

more consistent with longer cycle horizons relevant to fiscal authorities.  

Figure 5 – power transfer functions of the trend and the cyclical components of the HP filter for 

different values for 𝜆 and the ideal filer cut-off frequency 2π/8 

 

Source: the Network of EU IFIs calculations based on Mohr (2005) 

The impact of different values of 𝜆 can be best illustrated in the frequency domain byanalysing the 

power transfer functions of the trend and the cyclical component for different values of the penalty 

parameter (Fig. 5). The frequency response (gain) function for the cyclical component of the HP 

filter is defined as: 

𝐺𝐻𝑃(𝜆, 𝜔) =
4𝜆(1−cos(𝜔))2

4𝜆(1−cos(𝜔))2+1
,                                                                                                    (3) 

where 𝜔 is the corresponding frequency to be filtered and the low-pass gain is 1–𝐺𝐻𝑃(𝜆, 𝜔). The 

squared gain functions are the corresponding power transfer functions depicted in Figure 5. Lower 

frequencies would be ideally allocated to the trend and higher frequencies to the cycle. Higher 

                                                      

 

11 A relevant analysis on the choice of λ across sampling frequencies is found in Maravall and del Rio (2007). 
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values of 𝜆 shift the gain function of trend closer to zero, hence the latter becomes smoother and 

approaches linear trend in the limit. On the contrary, with lower values of 𝜆, the trend becomes 

more volatile as it will contain more of high-frequency spectrum approaching the original data 

when the penalty value drops to zero. A cyclical component as a residual of the trend-cycle 

decomposition will clearly have the opposite effects. 

Following Pedersen (2002), the HP filter can be viewed as an approximation to the ideal filter. 

Suppose that the objective is to filter out a cycle of 8 (or fewer) years. This implies an ideal 

rectangular gain function in the frequency domain with the critical cut off frequency of 2π/8. By 

adjusting the value of the penalty parameter 𝜆, we can approximate an ideal filter to some extent. 

But this approximation will introduce two types of distortions: (1) compression when a part of high 

frequency goes to the trend, and (2) leakage when a part of low-frequency data goes to the cycle. 

This frequency domain fact explains the trade-off between two objectives – by changing the value 

of penalty either the trend becomes too volatile or the cycle will contain too much of the trend. The 

compromise solution hence requires an appropriate modification of the HP filter to lower the 

impact of the trade-off.  

The approximation result will depend on the length of the cycle assumption and the overall 

distortionary effect of the filter that depends on the properties of approximate power transfer 

function as compared with the ideal filter (Pedersen 2002). Therefore an optimal choice of penalty 

will minimize the deviations from the ideal filter in the sense of a specific loss function. Pedersen 

suggested to use a symmetric view on both types of distortions and considered a squared loss 

function, while in some applications an asymmetric weight is put on leakage and compression types 

of distortions, e.g. Bouthevillain, et al. (2001) placed a higher weight on the compression seeking to 

minimize the deviations from the latter by more. 

Conditional on the chosen smoothness parameter 𝜆 the solution to minimisation problem (2) yields a 

non-parametric moving average representation of the cyclical component, i.e. the filtering problem 

may be viewed as a high-pass problem (King and Rebelo 1993): 

𝑎(𝐿) =
𝜆(1 − 𝐿)2(1 − 𝐿−1)2

𝜆(1 − 𝐿)2(1 − 𝐿−1)2 + 1
=

𝜆𝐿−2(1 − 𝐿)4

𝜆𝐿−2(1 − 𝐿)4 + 1
⇒ 𝑐𝑡 = 𝑎(𝐿)𝑦𝑡 , 𝑦𝑡

∗ = (1 − 𝑎(𝐿))𝑦𝑡 , 
(4) 

 

where 𝐿 is a backshift  (or lag) operator: 𝐿𝑦𝑡 = 𝑦𝑡−1, while its inverse 𝐿−1 shifts time series forward 

(a lead operator). King and Rebelo (1993) showed that given the four first difference terms in the 

numerator of (4) the HP filter can render stationarity in 𝑐𝑡 for any integrated process (possibly with 

deterministic polynomial trends) up to the fourth degree. Besides, equation (4) implies that the cycle 

is proportional to the forth difference of the trend, which is shifted forwards by exactly two periods: 

 𝑐𝑡 =  𝜆𝐿
−2(1 − 𝐿)4𝑦𝑡

∗, 2 < 𝑡 < 𝑇 − 2, but since the filter in the middle of the sample is symmetric 

and depends on the past and future values of the actual data the phase shift in practical applications 

will be close to zero (St-Amant and Van Norden 1997).  

For a more general stochastic interpretation of the HP filter, it is convenient to represent the 

minimisation problem (2) in the state space form (Murray 2014): 

Signal: 𝑦𝑡 − 𝑦𝑡
∗ − 𝑐𝑡 = 0, (5) 

State: 𝑦𝑡+1
∗ = 2𝑦𝑡

∗ − 𝑦𝑡−1
∗ + 𝜀2,𝑡, 𝜀2,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎1

2/𝜆), (6) 

State: 𝑐𝑡 = 𝜀1,𝑡 , 𝜀1,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎1
2). (7) 
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The state-space representation of the HP filter can then be used for real-time and ex-post validation of 

the method applying the corresponding one-sided (Kalman filter) or two-sided (Kalman smoother) 

filters (Kalman 1960) as described in Appendix B. The same trick is operational for any other type of 

filters. The state-space representation is used to highlight a number of specific implicit assumptions 

and judgements other than the earlier discussed value of penalty 𝜆 (Mohr 2005, Murray 2014): 

• First, equation (6) means that the prior belief for a data generating process of the trend is the 

second order random walk (a random walk with a stochastic drift), which is implausible for 

many macroeconomic series that are oft-assumed to be an integrated process of the first order 

with a deterministic drift. Besides, the best next period prediction of potential output growth 

is current potential output growth, which could be inconsistent, for instance, with the 

catching-up and convergence assumptions that are often relevant for the CEE countries, 

among others.  

• Second, the signal equation (5) implies that potential output and output gap estimates sum up 

to original data, i.e. there is no irregular shock 𝜀𝑡 as in (1) to capture non-cyclical behaviour. 

According to the time-domain representation of HP filter, the cycle is not explicitly modelled, 

but is defined as a residual process. If a higher frequency data (e.g., a quarterly real GDP) is 

not seasonally adjusted, the cyclical part will also contain the seasonal component. It is thus 

recommended to seasonally adjust the data before the application of HP filter, yet the quality 

of adjustment matters too.  

• Third, if 𝜀1,𝑡 is defined as a zero-mean white noise process the best prediction of the output 

gap is its mean, i.e. zero. In practice, 𝜀1,𝑡 could be explicitly defined as an autoregressive 

process as, for instance, in trend-cycle decomposition by Mohr (2005) or suggested in 

Hamilton (2017). On the other hand, the cycle’s persistence is introduced through the 

distortional autocorrelation effects, the properties of which depend on the value of penalty 𝜆. 

• Finally, the assumption that shocks to demand 𝜀1,𝑡 and to supply 𝜀2,𝑡 are assumed to be 

uncorrelated is implausible as it rules out the possibility of Keynesian hysteresis – a large 

negative output gap that can have very persistent effects on potential output via 

underemployment equilibrium in the labour market or drop in the level of productive 

investments.   

Bouthevillain, et al. (2001) points to another problem, which is not directly linked to the state-space 

representation, that the HP filter is unable to detect and reflect a sudden structural break in trend. This 

problem is, however, less severe the lower the chosen value for penalty 𝜆.  

Finally, the HP filter may be viewed as a member of the Butterworth family of filters (Gómez 2001) 

the low-pass gain function of the two-sided version of which when based on sine function is given by: 

𝐺𝐵(𝑛, 𝜔) =
1

1 + 𝜆′{sin(𝜔/2)}2𝑛
, (8) 

 

where 𝜔 ∈ [0, 𝜋] is a frequency, 𝜔𝑐 ∈ (0, 𝜋) is a cut-off frequency when 𝐺𝐵(𝑛, 𝜔𝑐) = 0.5, 𝜆′ is a 

signal-to-noise ratio parameter, 𝑛 is a smoothness parameter that has to be not less than the order of 

the stochastic trend. When 𝑛 equals 2 the low-pass gain (8) is the low-pass gain for the HP filter: 

1 − 𝐺𝐻𝑃(𝜆, 𝜔) =
1

4𝜆(1 − cos(𝜔))2 + 1
=

1

𝜆(2 sin(𝜔/2))4 + 1
= 𝐺𝐵(2,𝜔). (9) 

 

In general, there could exist a better approximation of an ideal low-pass filter by a more general 

member of a Butterworth family of filters with 𝑛 > 2, since higher values of the 𝑛 result in a steeper 
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approximation of the ideal filter around the cut-off frequency at the expense of worse approximation 

at the end-of-sample. For the most of macroeconomic time series, stochastic trends of order higher 

than two do not make much sense, therefore such filters will have less economic meaning (Mohr 

2005). The Butterworth filter interpretation is useful as it links the penalty with the cut-off frequency 

by 𝜆 = (2 sin(𝜔𝑐/2))
−4. It turns out that for annual data Ravn and Uhlig (2002) 6.25 

recommendation is consistent with 10 years cut-off, while 100 – with 19.8 years (Casey 2018). 

The most often discussed weakness of the HP filter (as any other two-sided filter) is the so-called 

“end-of-sample problem”. A moving average representation (4) at the end of the sample first becomes 

asymmetric and then one-sided. Thus, the value of potential output 𝑦𝑡
∗ towards the end of the period is 

driven to a large extent by the value of actual output. It follows that potential output growth is 

biased down for negative output gaps, and biased up for positive output gaps by much more than 

when applying a two-sided HP filter (Murray 2014). This can be particularly problematic when 

assessing the output gap conditions in real time, especially in the case when the data is significantly 

revised. The problem is partly mitigated by extending the actual data with projections, yet a certain 

level of bias remains (Bouthevillain, et al. 2001, Ódor and Jurašekova Kucserová 2014). Another 

interesting solution, which was introduced in Butler (1996) at the Bank of Canada, is to put more 

restrictions on the original problem. However, this solution comes at the cost of higher phase shifts 

and higher prior trend dominance on the cyclical component (Box 3). 

Box 3. Will more restrictions end the end-of-sample problem? 

A major problem with the HP filter is that trend or potential output estimates may be driven to a 

large extent by the value of actual output at the end of a sample. So how do we prevent the tail 

wagging the dog?  

One option could be to place more restrictions on the original problem (2). Ignoring the structural 

information for expositional simplicity the modified filter as in Butler (1996)  solves the following 

problem: 

min
{𝑦𝑡
∗}𝑡=1
𝑇
∑(𝑦𝑡 − 𝑦𝑡

∗)2 

𝑇

𝑡=1⏟        
goodness-of-fit

+ 𝜆∑[Δ2𝑦𝑡+1
∗ ]2 

𝑇−1

𝑡=2⏟          
degrees-of-smoothness

+ 𝜆𝑝𝑟∑[Δ𝑦𝑡
∗]2 

𝑇−1

𝑡=2⏟        
prior predictions

+ 𝜆𝑠𝑠 ∑ (Δ𝑦𝑡
∗ − 𝜇𝑠𝑠)

2 

𝑇

𝑡=𝑇−𝑗⏟              
end-of-sample anchor

,  (10) 

 

where Δ𝑑 = (1 − 𝐿)𝑑 is the d-th difference operator; 𝜇𝑠𝑠 is a steady-state growth rate (or any other 

deterministic drift) of the potential output in the last j + 1 periods of the sample – an anchor that 

implies the reversion of the potential output growth towards a constant (or a drift) exactly at the 

end-of-sample, while a stochastic drift in (2) implies none. For quarterly data Butler (1996) 

suggested to restrict the final 15 quarters (𝑗 = 14) of the sample and to set the penalty parameter 

𝜆𝑠𝑠 to 64. Another novelty in (10) is a recursive weight with which new data updates the potential 

output growth, where higher values of penalty 𝜆𝑝𝑟 would mitigate the impacts of new observations 

by more. Butler (1996) suggests setting this parameter to 1. Both modifications result in a moving 

average representation of the modified one-sided filter associated with (10) to behave close to the 

weights defined by two-sided HP-filter in the middle of the sample. This makes estimates of the 

output gap behave in a more regular way at the end of sample.  

Such restrictions are not costless. St-Amant and van Norden (1997) showed that this regularisation 

comes at the cost of much higher leakage effect and the extracted cycle becomes dominated by 

low-frequency movements not normally associated with the output gap by much more than a 
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simple HP filter, but wins in terms of much lower compression. Therefore the net distortionary 

effect of the filter is rather neutral.  

Another, perhaps more important, impact of (10) is the greater phase shift of the modified one-

sided filter as compared with its HP counterpart. An empirical investigation in St-Amant and van 

Norden (1997) shows that the output gap extracted with the modified filter for Canada’s data may 

come with a lag of 2–4 quarters, while the lag is roughly zero for one-sided HP filter. Hence, more 

restrictions and regularity do not necessarily imply a better net effect on the accuracy of the 

estimated output gap. 

All of the issues discussed above may lead to spurious (artificial) distortions in the cyclical estimates. 

These may therefore have no basis in the underlying data-generation process (Hamilton 2017). Of 

course, other filters (for instance, as is shown in Murray (2014) for the UK) do not necessarily lead to 

a better balance of statistical properties. Pollock (1999) and Pedersen (2002) noticed that the spurious 

cycle claim is, in general, inaccurate, since spurious cycles, in the sense of distorted auto-correlation 

functions, may be induced by the ideal filters too. Therefore, one should pay attention to the general 

distortion as compared with the power transfer function of the ideal filter and seek to minimize the 

integral sum of compression and leakage effects. At the same time, Mohr (2005) used HP filter as a 

starting example to generalize the stochastic representation of the model to a trend-cycle (TC) filter 

and to resolve the most of the abovementioned problems also including the class of Butterworth filters 

as a particular case. 

Prior-Consistent filter 

Before putting more structural content into the estimation methods, it is worth questioning the prior 

belief for the data generating process of the trend directly. “A close cousin” to the HP filter is a simple 

Prior-Consistent (PC) filter12 introduced in Laxton, et al. (1998). The PC filter shares similarities with 

the HP filter assumptions. The first assumption is exactly the same as for the HP filter, but the second 

differs (Murray 2014):  

• actual output does not deviate too far from its trend level (the output gap is not too big); 

• potential output growth is consistent with the recent past behaviour or drift (the growth of the 

potential output reverts to a drift).  

Then a PC minimisation problem is formulated as: 

min
{𝑦𝑡
∗}𝑡=1
𝑇
∑(𝑦𝑡 − 𝑦𝑡

∗)2 

𝑇

𝑡=1⏟        
goodness-of-fit

+ 𝑘∑[(𝑦𝑡+1
∗ − 𝑦𝑡

∗) − 𝑑𝑟𝑖𝑓𝑡𝑡]
2 

𝑇−1

𝑡=2⏟                  
degrees-of-smoothness

,  𝑑𝑟𝑖𝑓𝑡𝑡 = �̅�𝑡 − �̅�𝑡−1,  𝑘 =
𝜎1
2

𝜎2
2 > 0, (11) 

 

where 𝑦𝑡
∗ is the unobserved potential output; 𝑦𝑡 is the observed actual output; �̅�𝑡 is the prior belief 

regarding the potential output, the change of which is a deterministic drift; 𝜎1
2 is the variance of the 

output gap; 𝜎2
2 is the variance of the trend growth deviations from its pre-defined historical rate of 

drift and 𝑘 is a positive penalty parameter with a similar meaning to a corresponding parameter of a 

HP filter. If the dynamics of the drift term are defined as stochastic (the first difference in the potential 

                                                      

 

12 In Murray (2014) the method is called Prior-Constrained. 
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output), then the PC problem (11) becomes equivalent to (2). The PC filter has a clear advantage over 

the HP filter in that it allows practitioners to include any prior beliefs regarding the future 

development of potential output . It also adequately represents the empirically observed data 

generating process – the first order integrated process with a deterministic drift – for the most of the 

macroeconomic variables. These beliefs could reflect, for instance, the catch-up nature of economic 

growth or any anticipated structural breaks. In another extreme, if none of the information exists, the 

drift could be represented by a constant steady state rate of growth in potential output that serves as a 

long-term anchor for the potential growth dynamics.  

The arbitrary choice of the PC penalty k is similar to the HP problem. Murray (2014) argues that if a 

5 per cent output gap is as moderate as the fifth percentage change in the level of potential output, 

then 𝑘 = 𝜎1
2 𝜎2

2⁄ = 52/(1/5)2 = 625 is a good choice for quarterly data. In annual terms, this choice 

is equivalent to the output gap shocks to be about 6.25 times as large as those to the level of potential 

output13 or the parameter 𝑘 ≈ 39. Laxton, et al. (1998) suggested that the PC penalty defined as the 

ratio between squares of the prior for the large gap and the prior for the large change in the potential 

output should be around 5, hence the annual PC penalty equals 25, while the corresponding quarterly 

value 400. Since prior beliefs are formed on annual basis it is reasonable also to consider Ravn and 

Uhlig (2002) type frequency conversion factors suggested for HP filters and leading to a higher value 

of 6400 for quarterly data. From the long-term standpoint of fiscal authorities and IFIs, higher values 

are preferable, yet the prior beliefs on what is a large output gap and what is a large deviation from the 

prior rate of potential growth remain arbitrary and country-specific. 

For a more general stochastic interpretation of the PC filter and ex-ante and ex-post validation through 

Kalman algorithm (Kalman 1960), it is convenient to represent the minimisation problem (11) in the 

state-space form (Murray 2014): 

Signal: 𝑦𝑡 − 𝑦𝑡
∗ − 𝑐𝑡 = 0, (12) 

State: 𝑦𝑡+1
∗ = 𝑦𝑡

∗ + 𝑑𝑟𝑖𝑓𝑡𝑡 + 𝜀2,𝑡, 𝜀2,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎1
2/𝑘), (13) 

State: 𝑑𝑟𝑖𝑓𝑡𝑡 = 𝑑𝑟𝑖𝑓𝑡𝑡−1 (14) 

State: 𝑐𝑡 = 𝜀1,𝑡 , 𝜀1,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎1
2). (15) 

Murray (2014) shows that the implicit assumptions would be similar in nature to those of HP filter, 

with the key difference being that the HP filter is consistent with a stochastic drift, when shocks are 

transmitted to both the potential output and its growth rate; while the PC filter is consistent with 

constant drift, when shocks will affect only the level of potential output (shifts) but not the growth 

rate. As we said before, any prior belief on the deterministic drift dynamics is possible. With a similar 

moving average behaviour in the middle of the sample, the differences become more visible by the 

end of the sample, because, for one-sided filters, it is more costly to close the output gap for a PC 

filter than by adjusting also the estimates of potential output growth. Therefore, the output gap bias at 

the end-of-sample becomes smaller and the overheating or recession problem becomes more visible.  

At the same time, the PC filter has a higher leakage effect similar to that discussed in Box 3. For 

instance, for small and open economies the cycle becomes more dominated by a fast past converging 

growth pace of the trend component and is slower to respond to any structural changes. The latter, 

                                                      

 

13 Murray (2014) claims that this ratio is about 5 times as large, but then it would be a parameter 400 as in Laxton, et al. 

(1998) case. 
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however, could be an explicit part of the deterministic drift if the structural change could be identified 

and anticipated in real-time.   

Band-pass filters: ideal and approximations 

Both classical and growth cycles seek to isolate the patterns in duration varying from more than one 

year to ten or twelve years, but not divisible into shorter cycles (Burns and Mitchel 1946, Mintz 

1969). Hence, an ideal band-pass (IBP) filter aims to directly isolate the components of time series 

that belong to a given range of frequencies [𝜔1, 𝜔2], where the period of the cycle (in quarters) is 

given by  

𝑝𝑓 = 2𝜋 𝜔𝑓⁄ ,  𝑓 ∈ {1,2}. The IBP filter provides an ideal split into a trend, a cycle and an irregular 

components as in (1). The common prior beliefs are similar to that of the HP filter considering 

anything with a frequency over 8 years as a trend, between 2 and 8 years is a cycle and below 2 years 

is a noise. Band-pass filters can therefore be applied to seasonally adjusted or unadjusted data, given 

that outliers14 are removed (Mazzi, Ozylidririm and Mitchell 2017). Murray (2014) points out that the 

convention on the choice of cut-offs is not supported by a strong empirical evidence, so this choice is 

a judgement. 

Koopmans (1974) showed that it is possible to construct an ideal low-pass filter in the time domain as 

an infinite dimensional symmetric linear time-invariant filter: 

𝑦𝑡
𝑓
= ∑ ℎ𝑖

𝑓

∞

𝑖=−∞

𝑦𝑡−𝑖,   ∑ |ℎ𝑖
𝑓
|

∞

𝑖=−∞

< ∞,  ℎ0
𝑓
=
𝜔𝑓

𝜋
,  ℎ𝑖

𝑓
= sin(𝑖𝜔𝑓) 𝑖𝜋⁄ ,  𝑓 ∈ {1, 2}, (16) 

 

the difference of two low-pass filters at different cut-off frequencies then defines the ideal band-pass 

filter with the coefficients ℎ𝑖
𝑏𝑝
= ℎ𝑖

1 − ℎ𝑖
2.  

Since it is impossible to estimate (16) within a finite sample, in practice, an approximation is required. 

Band-pass filters will then differ in the way they specify the weights for the finite sample 

approximation. 

Baxter and King (1999) proposed a symmetric Baxter-King (BK) approximation to the ideal filter by 

solving the following minimization problem in the frequency domain: 

�̂�𝑡
𝐵𝐾 = ∑ ℎ̂𝑖

𝐵𝐾

𝑛

𝑖=−𝑛

𝑦𝑡−𝑖,   min
{ℎ̂𝑗
𝐵𝐾}𝑗=−𝑛

𝑛

1

2𝜋
∫ (ℎ(𝜔) − ℎ̂𝐵𝐾(𝜔))

2𝜋

−𝜋

𝑑𝜔 + 𝜆 [∑ ℎ̂𝑖
𝐵𝐾 −𝜙

𝑛

𝑖=−𝑛

] , (17) 

 

where ℎ(𝜔) = ∑ ℎ𝑖
𝑏𝑝∞

𝑖=−∞ 𝑒−𝑖𝜔𝑗 and ℎ̂𝐵𝐾(𝜔) = ∑ ℎ̂𝑖
𝐵𝐾𝑛

𝑖=−𝑛 𝑒−𝑖𝜔𝑗 are the Fourier transforms of the 

corresponding linear filters (16) and (17), the zero frequency restriction 𝜙 means that at a zero 

frequency the filter can deviate from zero. From the first order conditions and (16) than follows that: 

ℎ̂𝑖
𝐵𝐾 = ℎ0

𝑏𝑝
− (𝑛 + 1)−1∑ ℎ𝑖

𝑏𝑝𝑛
𝑖=−𝑛 . A symmetry insures that the approximation does not imply phase 

shifts, but could distort amplitudes in the same sense as any other approximation of an ideal filter. 

From the corresponding gain function of the BK filter given by: 

𝐺𝐵𝐾(𝑛, 𝜔) = ℎ̂0
𝐵𝐾 + 2∑ℎ̂𝑖

𝐵𝐾

𝑛

𝑖=1

cos(𝑖𝜔), 
(18) 

 

                                                      

 

14 The outliers could be removed applying automatic detection procedures similar to TRAMO-SEATS (Gómez and Maravall 

1996) 
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follows that the distortions are smaller with higher values of 𝑛. This, however, requires exclusion of 𝑛 

observations both at the beginning and at the end of the sample (an oft-used cut-off is about 3 years or 

12 quarters) and hence BF filter is impractical in real-time applications. The problem could be partly 

mitigated by extending the time series with the forecasts of at least cut-off length. In that case, the 

end-of-sample problem becomes a forecasting problem. 

Christiano and Fitzgerald (1999) explain that an optimal approximation to the ideal band-pass filter 

requires the knowledge of the true data generating process of 𝑦𝑡 and should account for it. In a more 

general setting, the authors suggested an asymmetric time-varying Christiano-Fitzgerald (CF) filter 

(also known as a random walk filter) which solves the following optimisation problem: 

�̂�𝑡
𝐶𝐹 = ∑ ℎ̂𝑡,𝑖

𝐶𝐹

𝑛𝑡,2

𝑖=−𝑛𝑡,1

𝑦𝑡−𝑖 ,    min
{ℎ̂𝑗
𝐶𝐹}

𝑗=−𝑛𝑡,1

𝑛𝑡,2

1

2𝜋
∫ (ℎ(𝜔) − ℎ̂𝐶𝐹(𝜔))

2𝜋

−𝜋

𝑓𝑦(𝜔)𝑑𝜔, 
(19) 

 

where 𝑓𝑦(𝜔) is the spectral density of the actual data 𝑦𝑡  and the approximation window depends on 

the choice of time-varying parameters 𝑛𝑡,1 and 𝑛𝑡,2. Both parameters could be fixed, inducing 

stationarity and equal resulting symmetry. In the latter case the corresponding gain function is 

equivalent to (18), where the estimated parameters are changed to ℎ̂𝑖
𝐶𝐹 = −0.5ℎ0

𝑏𝑝
− ∑ ℎ𝑖

𝑏𝑝𝑛−1
𝑖=1 , and 

the optimal cut-off periods will depend on the assumptions regarding the spectral density 𝑓𝑦(𝜔). 

Christiano and Fitzgerald (1999) conventionally assumed that the data generating process is an 

integrated of the first order with probably deterministic drift. If the assumption is violated, then the 

extracted cycle will be distorted. At the end of the sample, the CF filter will also induce phase shifts in 

the estimated cyclical components. Another drawback is that the time-varying in parameters problem 

(19) is not conveniently defined in the state-space form, therefore ex-ante and ex-post validation via 

the Kalman algorithm is hard to achieve. 

In general, band-pass filters are not currently widely used within the Network of EU IFIs, some other 

interesting extensions like Butterworth filter or wavelet-based methods could be considered (Álvarez 

and Gómez-Loscos 2017). The Butterworth filters are members of a general family of TC filters 

pioneered within the Eurosystem by Mohr (2005) and will be discussed at the end of this section. 

Beveridge-Nelson decomposition 

The Beveridge-Nelson (BN) decomposition, as suggested by Beveridge and Nelson (1981), is one of 

the most prominent parametric procedures for finding the cyclical component of the nonstationary 

time series. The BN decomposition rests on a number of assumptions (Murray 2014): 

• The actual output growth is a stationary process, i.e. the data generating process of actual 

output indeed follows an autoregressive integrated moving average ARIMA(p, 1, q) process: 

𝑎(𝐿)Δ𝑦𝑡 = 𝜇 + Δ𝑓𝑡 + 𝑏(𝐿)𝜀𝑡 ,  𝜀𝑡~𝑁𝐼𝐷(0, 𝜎
2), (20) 

 

where 𝜇 is a constant long term growth rate of output (convergence or steady-state anchor), 𝑓𝑡 

is any deterministic continuous convergence function 𝑓𝑡
𝑡→∞
→  0 defined e.g. as in Celov 

(2015), 𝑎(𝐿) = ∑ 𝑎𝑗𝐿
𝑗𝑝

𝑗=0  and b(𝐿) = ∑ 𝑏𝑗𝐿
𝑗𝑞

𝑗=0  are two lag polynomials of orders p and q 

respectively. In practical applications, the q parameter is often restricted to 0, while p is up to 

3 lags for annual data or 12 lags for quarterly (Murray 2014, Kamber, Morley and Wong 

2017). 
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• The trend is equal to the limiting forecast of the series adjusted for its mean growth rate 

(Mazzi, Ozylidririm and Mitchell 2017): 

𝑦𝑡
∗ = lim

ℎ→∞
[𝐸(𝑦𝑡+ℎ|Ω𝑡) − ℎ𝜏], (21) 

 

where ℎ is a forecasting horizon, Ω𝑡 is all information available when the forecast is made,  

𝜏 = 𝐸(Δ𝑦𝑡) is the mean growth of the first difference of the logarithmically transformed 

actual output 𝑦𝑡 (the long-run drift). The cyclical component is defined as the residual 𝑐𝑡 =

𝑦𝑡 − 𝑦𝑡
∗.  

• Both trend and cycle are affected by a common shock, thus in the corresponding convenient 

for estimation and validation state-space form (Morley, Nelson and Zivot 2003) the shocks to 

cycle and trend have to be correlated. Indeed integration of (20) with respect to BN 

decomposition 𝑏(𝐿) 𝑎(𝐿)⁄ =: 𝑐(𝐿) = 𝑐∗(𝐿)(1 − 𝐿) + 𝑐(1) yields: 

𝑦𝑡 = 𝑦0 + 𝜇 ⋅ 𝑡 + 𝑓𝑡⏟        
deterministic trend

+ 𝑐(1)∑ 𝜀𝑗
𝑡
𝑗=1⏟        

stochastic trend

+ 𝑐∗(𝐿)𝜀𝑡⏟    
cycle

,  𝜀𝑡~𝑁𝐼𝐷(0, 𝜎
2),  (22) 

 

where stochastic trend and cycle are driven by the same innovations  𝜀𝑡 and the potential 

output is the sum of a (non-linear) deterministic trend (that could contain also structural 

breaks) and a stochastic trend (a random walk). The most general definition of BN trend (21) 

and decomposition (22) implies that in the long-run all possible trend components will 

converge to the BN trend as the forecasting horizon h tends to infinity. This is exactly due to 

the fact that the value of the long-run projection of any cycle is by definition equal to zero. 

Hence the BN trend is the limiting trend (Mazzi, Ozylidririm and Mitchell 2017). 

• The ARIMA specification is correct. The decomposition (22) is very sensitive to the actual 

specification of the ARIMA model that may result in very unstable output gap estimates. 

The third assumption highlights a key difference from the typical assumptions in the state-space 

representations of the unobserved components models or HP/PC filters. That is, shocks to potential 

output are assumed to be negatively correlated with cyclical shocks. In other words, a positive shock 

pushes potential output up, whilst it pushes aggregated demand down. This restrictive view is, 

however, consistent with a productivity shock interpretation that may occur due to automatization, 

robotization and similar 4th industrial revolution outcomes. On the other hand, the direct consequence 

of the common shock dependence is that the extracted trend tends to be highly irregular due to a 

stochastic trend, i.e., potential output could be even more volatile than an actual output (Murray 

2014), if not efficiently restricted solving the model in the state-space form as recently suggested in 

BN filter by Kamber, Morley and Wong (2017). The authors provided an intuitive explanation for the 

case of unrestricted estimates of an AR(p) model when the signal-to-noise ratio in terms of trend 

shocks as a fraction of the overall forecast error variance: 

𝛿 = 𝜎𝑦∗
2 𝜎2⁄ = 𝑐(1)2, (23) 

 

where 𝑐(1) is the long-run multiplier that captures the permanent effect of a forecast error on the 

long-run conditional expectation of 𝑦𝑡 in (21). Kamber, Morley and Wong (2017) showed that for the 

US quarterly real GDP growth the estimated signal-to-noise ratio is  𝛿 = 2.22 and implies that the 

trend volatility will be more than twice volatile than the forecast errors in the log of real GDP, leading 

to the output gap as the residual to be with smaller amplitude and counterintuitive sign. Notably, for 

any unrestricted stationary AR(p) model  𝛿 = 1 𝑎(1)⁄ > 1. Therefore, all we need is to restrict the 

penalty parameter 𝛿 rather than allow the model to freely estimate it. For instance, under dogmatic 
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prior similar to Hodrick and Prescott (1997) 𝛿 = 0.05 will be consistent with the strict belief that only 

5 per cent of the quarterly forecast error variance for output growth is due to trend shocks. Kamber, 

Morley and Wong (2017) proposed an algorithm for the automatic selection of 𝛿 by maximising the 

implied amplitude-to-noise ratio, i.e. making the output gap more visible. 

The suggested procedure is promising as it results in much smaller revisions of real-time estimates as 

compared with ex-post estimates, i.e. the amount of end-of-sample problem is substantially reduced, 

not to mention the possibility to account for 

likely structural breaks. An application of the 

BN filter to the logarithmically transformed 

annual real GDP data for the euro area in 

Figure 6 showed that the automatically chosen 

penalty 𝛿 ≈ 0.21 when an AR(3) model is 

fitted. The quality of the parametric BN 

filtering method is expected to increase with 

longer time series and/or higher frequency 

data.  

Morley, Nelson and Zivot (2003) showed that 

the state-space representation of BN filter, 

which is useful for ex-ante and ex-post 

validation of the method by Kalman filter 

(Kalman 1960), is equivalent to the univariate 

unobserved components model discussed 

below.  

 

Univariate unobserved components model and trend-cycle filter 

A common parametric way to conduct trend-cycle decompositions is the structural time series 

approach. The approach frames the problem in terms of unobserved components (UC), which have a 

direct economic interpretation. According to Mazzi, Ozylidririm and Mitchell (2017), such models 

could be viewed as a flexible data-driven approach to detrending. Flexibility is achieved through 

accommodation of both deterministic and/or stochastic non-stationarity.  

A generic UC representation takes the following state-space form (Harvey 1985): 

Signal: 𝑦𝑡 − 𝑦𝑡
∗ − 𝑐𝑡 = 𝜀𝑡, 𝜀𝑡  ~ 𝑁𝐼𝐷(0, 𝜎

2), (24) 

State: 𝑦𝑡
∗ = 𝑦𝑡−1

∗ + 𝜇 + 𝜀2,𝑡, 𝜀2,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎2
2), (25) 

State: 𝑐𝑡 is stationary and ergodic,  𝜀1,𝑡  ~ 𝑁𝐼𝐷(0, 𝜎1
2), (26) 

where 𝑦𝑡
∗ is the unobserved potential output, 𝑦𝑡 is the observed actual output, 𝜎1

2 is the variance of the 

output gap, 𝜎2
2 is the variance of the trend growth deviations from constant drift, and 𝜀𝑡 is an irregular 

component15 with variance 𝜎2. All error terms are assumed to be mutually uncorrelated. One may 

                                                      

 

15 In the original formulation of the decomposition by Harvey (1985) this irregular term was omitted. In general, 𝜀𝑡 can 

follow any stationary ARMA process fulfilling requirement to be uncorrelated with other model residuals. 

Figure 6 – BN filter’s application for the euro 

area’s output gap with a penalty 

parameter assessed within 10 years 

window, 𝑝 = 3 

 

Source:  European Commission’s 2018 spring 

forecast, the Network of EU IFIs’ calculations 
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view the state-space form as a further generalisation of a PC filter problem. The generalisation 

explicitly introduces the irregular component to absorb outliers, especially at the end-of-sample, and 

introduces the explicit parametric model for the cycle. Since the macroeconomic variables may follow 

a process different from a random walk with constant drift, a generalized stochastic trend model in the 

implicit form as in Mohr (2005) is given by: 

State: Δ𝑑−1(Δ𝑦𝑡
∗ − 𝜇) = 𝜀2,𝑡, 𝜀2,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎2

2), (27) 

where Δ𝑑 = (1 − 𝐿)𝑑 is the d-th difference operator; and 𝑑 denotes the order of the stochastic trend. 

Mohr (2005) points out that this generalization is well known in the literature. The case 𝑑 = 1 with 

𝜇 = 0 corresponds to exponential smoothing, 𝑑 = 1 with non-zero drift as in (25) will correspond to 

extended exponential smoothing. If 𝑑 = 2 with 𝜇 = 0 we will get the HP filter problem, while the 

stochastic trend of order 𝑑 > 2 will correspond to other members of the Butterworth class of filters. 

The author recommends paying more attention to the cases 𝑑 ∈ {1, 2}. This is because the stochastic 

trends of a higher order than 2 make little sense when applied to typical macroeconomic data, as real 

GDP or inflation. Another possible extension is a local linear trend model, which introduces two 

states (Celov 2015, Jarociński and Lenza 2016, Constantinescu and Nguyen 2017, Cuerpo, Cuevas 

and Quilis 2018): 

State: 𝑦𝑡
∗ = 𝑦𝑡−1

∗ + 𝜇𝑡−1 + 𝜀2,𝑡, 𝜀2,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎2
2), (28) 

State: 𝜇𝑡 = 𝜌𝜇𝜇𝑡−1 + 𝜀𝜇,𝑡, 𝜀𝜇,𝑡  ~ 𝑁𝐼𝐷(0, 𝜎𝜇
2), 𝜌𝜇 ∈ [0, 1], (29) 

where the local linear trend (29) allows capturing U or inverted-U shaped patterns in the trend 

components.  

A key extension of the UC framework is an explicit model for the cycle. In HP (7) and PC (15) cases, 

the cyclical model was assumed to follow a normally distributed white noise process, where the 

visibility of the cycle was implicitly insured by corresponding penalty parameters 𝜆 and 𝑘 chosen in 

an arbitrary way. Following the stochastic cycle model of order c (Harvey 1985) one can derive an 

explicit stochastic ARMA(2c, c) representation of the cycle (Mohr 2005): 

State: (1 − 2𝜌 cos(𝜔𝑐)𝐿 + 𝜌
2𝐿2)𝑐𝑐𝑡 = (1 − 𝜌 cos(𝜔𝑐)𝐿)

𝑐𝜀1,𝑡, 𝜀1,𝑡  ~ 𝑁𝐼𝐷(0, 𝜎1
2), (30) 

where 𝜌 ∈ (0, 1) determines a damping factor and is typically assigned a value close to unity (e.g. 

0.975), or could be estimated16; 𝜔𝑐 is a frequency in radians 𝜔𝑐 = 2𝜋 𝑇𝑐⁄  corresponding to a cycle of 

length 𝑇𝑐, which also could be either assumed (e.g. 8 years or 32 quarters) or estimated. In the most of 

applications, the first order stochastic cycle (𝑐 = 1) is assumed. The HP and PC cases hence 

correspond to the stochastic cycle of the zero order (𝑐 = 0). It is straightforward to extend (30) by 

allowing additional cyclical determinants such as CUBS from European Commission’s CAM (Havik, 

et al. 2014), capacity utilisation or principal components that represent the cyclical position of the 

country. In most ] practical applications, however, a simpler approach is used allowing the cycle 𝑐𝑡 to 

follow an unrestricted AR(p) process, where p is often chosen to be equal 1 or 2 (Frale and De Nardis 

2017, Cuerpo, Cuevas and Quilis 2018): 

State: (1 − 𝜙1𝐿 − 𝜙2𝐿
2)𝑐𝑡 = 𝜀1,𝑡, 𝜀1,𝑡 ~ 𝑁𝐼𝐷(0, 𝜎1

2). (31) 

                                                      

 

16 To estimate a restricted parameter a useful trick is to define �̂�(𝛼) = (𝑡𝑜𝑙 + (1 − 2 ⋅ 𝑡𝑜𝑙)/(1 + 𝑒𝛼)), where 𝑡𝑜𝑙 is a 

tolerance margin close to zero (e.g. 0.01) and  𝛼 is the parameter to be estimated by either maximum likelihood. In Bayesian 

models the restricted estimation is achieved by choosing Beta distribution as a prior belief.  
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To understand the shock interdependence of the state-space form it is convenient to represent it in the 

reduced-form MA. For instance, assuming 𝜎2 = 0 and 𝜌𝜇 = 1 Cuerpo, Cuevas and Quilis (2018) get: 

𝑦𝑡 = 𝑦𝑡
∗ + 𝑐𝑡 =

1

1−𝜙1𝐿−𝜙2𝐿
2𝜀1,𝑡 +

1

(1−𝐿)2
𝜀2,𝑡 +

1

1−𝐿
𝜀𝜇,𝑡. (32) 

The state-space representation, hence, is flexible enough to accommodate alternative specifications 

for the trend and cycle components of GDP. In this way, the model provides a flexible and 

parsimonious way to represent different non-stationary dynamics17. 

The univariate TC filter applied by Lithuania’s and Ireland’s IFIs is defined as the state-space model 

represented by (24), (27) and (30). Seeking to highlight the differences from the HP and PC problems 

the corresponding minimization problem is (Mohr 2005): 

min
{𝑦𝑡
∗}𝑡=1
𝑇 ,{𝑐𝑡}𝑡=1

𝑇 ,𝜇
∑(𝑦𝑡 − 𝑐𝑡 − 𝑦𝑡

∗)2 

𝑇

𝑡=1⏟            
goodness-of-fit

+ 𝜆2 ∑ [Δ𝑑−1(Δ𝑦𝑡
∗ − 𝜇)]2 

𝑇−𝑑+1

𝑡=𝑑⏟                
stochastic trend

+

+ 𝜆1 ∑[(1 − 2𝜌 cos(𝜔𝑐)𝐿 + 𝜌
2𝐿2)𝑐(1 − 𝜌 cos(𝜔𝑐)𝐿)

−𝑐𝑐𝑡]
2 

𝑇

𝑡=2𝑐⏟                                    
stochastic cycle

,  

(33) 

 

where trend and cycle are extracted simultaneously and 𝑐 ≥ 1 is the order of the stochastic cycle. 

Similar to HP and PC problems, under additional assumptions that all three error terms are normally 

distributed, the penalty weights could be set to equal to the respective inverse signal-to-noise variance 

ratios: 𝜆1 = 𝜎
2 𝜎1

2⁄  and 𝜆2 = 𝜎
2 𝜎2

2⁄ . For the simplicity of calculations Mohr (2005) restricts both 

ratios to 1, noting that the impact of HP prior assumptions are fully reflected by the estimated or 

calibrated values of 𝜌 and 𝜔𝑐. This allowed the author to obtain a convenient solution in the matrix 

form, which is relatively easy to program and integrate with spreadsheets. However, the second 

restriction in UC models often deviates from unity, therefore the suggested restriction in general does 

not imply an optimal filter.  

The more computationally-intensive way to approach the state-space model (24), (27) and (30) is to 

estimate unknown parameters either by maximum likelihood (Cuerpo, Cuevas and Quilis 2018), using 

the prediction error decomposition, or by the Bayesian methods (Melolinna and Tóth 2016, 

Constantinescu and Nguyen 2017). Given the estimated parameters and applying the corresponding 

one-sided (Kalman filter) or two-sided (Kalman smoother) filters (Kalman 1960) we then obtain ex-

ante and ex-post estimates of the corresponding cycle 𝑐𝑡 and the trend 𝑦𝑡
∗ (Appendix B). Notice, 

however, that at the end-of-sample both estimates are identical and the proper validation is obtained 

only in the middle of the sample.  

Finally, since the UC model implies a restricted ARMA, the UC trend could be associated with the 

corresponding BN trend (Morley, Nelson and Zivot 2003). Indeed, the UC conditional on information 

Ω𝑡 will equal the BN trend when the UC model implies the same reduced-form ARMA model as the 

BN trend model is based (Mazzi, Ozylidririm and Mitchell 2017). Differences arise because in the UC 

model all error terms are explicitly assumed to be uncorrelated, in particular, 𝐸(𝜀1,𝑡𝜀2,𝑡) = 0. When 

the latter zero restriction is relaxed the solution of the UC and BN decompositions will be identical. 

                                                      

 

17 For instance, In the Spanish case, GDP can be modelled following an I(1) structure plus a highly persistent Markov-

switching drift, as shown in Cuevas and Quilis (2017). This specific structure can be linearly approximated by a random 

walk plus an evolving AR(1) drift. 
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Since the correlation between disturbances in BN decomposition are explicit there is a corresponding 

representation of BN filter in a state space form in terms of UC model.  

More complex detrending methods could be achieved by relaxing other assumptions of the UC state-

space representation. One prominent generalisation is a multivariate UC model that includes other 

signal equations that bring a semi-structural interpretation to the extracted trends and cycles. Such 

techniques essentially redistribute some additional stationary element between the BN trend and 

cyclical components (Mazzi, Ozylidririm and Mitchell 2017).  

Seeking refinement 

A critical issue with the univariate trend-cycle decompositions of (1), shown above, is that the 

methods rely heavily on prior judgements over the amplitude of the cycle and the dynamics of the 

potential output. It is crucial therefore to refine these priors using more information. This view is 

widely accepted by the Network of EU IFIs (Murray 2014, Ódor and Jurašekova Kucserová 2014, 

Frale and De Nardis 2017, Casey 2018, Cuerpo, Cuevas and Quilis 2018), central banks (Borio, 

Disyatat and Juselius 2017, Constantinescu and Nguyen 2017) and international institutions and has 

led to a growing body of empirical studies that seek to extract relevant information from more 

variables than just the observed actual output of the economy. 

Multivariate detrending methods are essentially more structural and combine their univariate 

counterpart by including additional macroeconomic variables whose stationary component is related 

to the output gap (Cuerpo, Cuevas and Quilis 2018). These macroeconomic variables may contain 

crucial information about the aggregated demand and supply side of the economy, internal and 

external imbalances that stems from many sources. Ódor and Kucserová (2014) reviewed the most 

common sources of cyclical variation “beyond-inflation” including financial cycles (Benetrix and 

Lane 2011, Borio, Disyatat and Juselius 2017), absorption cycles (Lendvai, Moulin and Turrini 2011) 

and commodity price cycles (Bornhorst, et al. 2011). 

The quality of the output gap extraction is higher with a better predictability of the unobserved 

potential output deviating from simple assumptions that the trend follows a random walk (with drift). 

This comes at the cost of increased complexity, both in terms of the estimation methods involved and 

in terms of the uncertainty regarding which variables to include. More structural models require using 

the judgement implying that the net outcome could be more uncertain than in univariate models 

discussed above. To bring more transparency to the judgement process, Cuerpo, Cuevas and Quilis 

(2018) summarized various aspects of the economy and proposed a “beauty contest” approach. 

Essentially, the approach lets the dataset speak for itself within the multivariate unobserved 

components framework.  

The section will cover all semi-structural methods used by the Network of EU IFIs. This mainly 

involves Multivariate filters (HP and PC), Multivariate Unobserved Components (MUC) models and 

Principal Components Analysis (PCA). We will, first of all, analyse the bivariate case, which extends 

the univariate models by an additional signal equation. We will then present the general case, i.e. with 

many additional variables. This is done by means of the associated state-space form of the general 

multivariate filter. We will finally turn to an unsupervised learning approach represented by PCA. 
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Bivariate filters 

As we saw for univariate methods, it is straightforward to augment the minimisation problem (2), 

(10), (11) or (33) including additional restrictions into the Lagrangian function. Laxton et al. (1992) at 

the Bank of Canada suggested augmenting the objective function of the HP filter (2) with the sum of 

squared residuals from any relevant signal relationship (as specified below). Targeting the inflation 

the authors included a variant of a Phillips curve. Extending their approach, Murray (2014) used the 

Prior-consistent (PC) filter (11) in an analogous way minimizing:  

min
{𝑦𝑡
∗}𝑡=1
𝑇
∑(𝑦𝑡 − 𝑦𝑡

∗)2 

𝑇

𝑡=1⏟        
goodness-of-fit

+ 𝜆1∑[(𝑦𝑡+1
∗ − 𝑦𝑡

∗) − 𝑑𝑟𝑖𝑓𝑡𝑡]
2 

𝑇−1

𝑡=2⏟                    
degrees-of-smoothness

+ 𝜆2∑(𝜀3,𝑡)
2
 

𝑇

𝑡=1⏟        
economic restriction

, (34) 

 

 

where 𝑦𝑡
∗ is the unobserved potential output; 𝑦𝑡 is the observed actual output; 𝜆1is a positive number 

that weights the relative importance of the ‘smoothness’ criterion of the filter (i.e. the growth rate of 

potential output does not differ too much from its historical average or rate of drift); 𝜆2 is a positive 

number that weights the relative importance of maximizing the empirical fit of the extra signal 

equation; drift is the prior value for the growth rate in the unobserved variable (potential output); and 

𝜀3,𝑡 denotes the errors of the additional signal equation. The latter corresponds to the third additional 

belief (besides of the first two beliefs of univariate PC filter (11)) that other indicators, for instance, 

inflation or unemployment, are informative about the cyclical position of the country. In the same 

way, we could extend the most general specification of the stochastic trend and an explicit model of 

the stochastic cycle in TC filter (33) pioneered by Mohr (2005). 

Evidently, the smaller the signal errors ∑ (𝜀𝑡)
2𝑇

𝑡=1  the better the empirical fit of the additional signal 

equation to empirical data. The relative importance of this ‘empirical fit’ criterion on the filter’s 

minimization program is measured by an extra penalty parameter 𝜆2. Similar to HP and PC problems, 

under additional assumptions that all three error terms are normally distributed, the penalty weights 

could be set to equal to the respective inverse signal-to-noise variance ratios: 𝜆1 = 𝜎1
2 𝜎2

2⁄  and  

𝜆2 = 𝜎1
2 𝜎3

2⁄ . Hence, the uncertainty regarding an optimal choice of penalty parameters becomes 

higher and the choice is still arbitrary. Murray (2014) suggests to set 𝜆1 = 𝜆2 = 𝑘, i.e. the ratio 

between the variance of the stochastic trend and the economic relationship is restricted to 1. Another 

popular solution is to restrict all variances to be equal by setting both parameter restrictions to 1. This 

choice is appealing if there is an explicit model for the stochastic cycle as in UC models (30).  

The state-space representations of the corresponding optimisation problems (for example, (12)–(15)) 

used for ex-ante and ex-post validation via Kalman algorithm (Kalman 1960) are then extended by 

adding a particular economic relationship as a signal equation and a set of UC trend-cycle 

decomposition state-space equations ((24) and (25) or another stochastic model of trend) to extract the 

supplementary cyclical component 𝑐𝑡
𝑒. Roughly speaking, a practitioner aims to add an explicit model 

of the cycle for a particular economic variable in the form of the linear regression:  

Signal: 𝑐𝑡
𝑒 = 𝛼1𝑐𝑡 +∑𝛽𝑖𝑥𝑖,𝑡 +

𝑘

𝑖=1

𝜀3,𝑡,  𝜀3,𝑡  ~ 𝑁𝐼𝐷(0, 𝜎3
2), (35) 
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where 𝑐𝑡 is the output gap (the treatment variable), 𝑐𝑡
𝑒 the cyclical component of the additional 

economic variable (the response variable), 𝑥𝑖,𝑡 is a set of k additional demand and supply side 

variables (controls) expressed as the corresponding cyclical components18.  

Murray (2014) considered three alternative signal equations (35) that link inflation, unemployment 

and capacity utilization with the output gap of the economy through individual relations stemming 

from economic theory. 

(a) The (New) Keynesian Phillips Curve (Gali and Monacelli 2005):  

𝑐𝑡
𝜋 = 𝛼1𝑐𝑡−1 + 𝛽1𝐸𝑐𝑡+1

𝜋 + (1 − 𝛽1)𝑐𝑡−1
𝜋 +∑𝛽𝑖𝑥𝑖,𝑡 +

𝑘

𝑖=2

𝜀3,𝑡 , 
(36) 

 

where 𝑐𝑡
𝜋 stands for the deviation of inflation 𝜋𝑡 from its time-varying trend determined by a random 

walk with zero drift (25); 𝐸𝑐𝑡+1
𝜋  is the expected deviation one period ahead; the inertia effect is caught 

by the lagged deviation 𝑐𝑡−1
𝜋 ; while 𝑐𝑡−1 denotes the lag of the output gap. Besides, the domestic 

inflation could be boosted by a foreign demand shock (trade partner’s output gap), the gaps in 

commodity prices or deviations in the terms of trade among many other variables caught by a k – 1 set 

of controls 𝑥𝑖,𝑡. The strength of the link between the cycles is measured by the positive coefficient 𝛼1. 

The neutrality of money is preserved by restricting the sum of the coefficients for lagged and future 

deviations of inflation from its trend to unity. Anchoring the expectations to, in general, the time-

varying trend of inflation the expected deviation becomes zero, i.e. 𝐸𝑐𝑡+1
𝜋 = 0. This restriction 

implies “accelerationist” specification that is consistent with the forward looking expectations 

explicitly linked to backward looking heuristic behaviour and inertia. Then, omitting the impacts of 

other controls, the oft-estimated form of the Philips curve is (Murray 2014, Melolinna and Tóth 2016, 

Frale and De Nardis 2017): 

𝑐𝑡
𝜋 = 𝛼1𝑐𝑡−1 + (1 − 𝛽1)𝑐𝑡−1

𝜋 +∑𝛽𝑖𝑥𝑖,𝑡

𝑘

𝑖=2

+ 𝜀3,𝑡 . 
(37) 

 

Inflation is defined either by the GDP deflator, CPI inflation, or by more domestically aligned CPI 

subcomponents. For instance, core inflation (CPI inflation net of food and energy prices (Jarociński 

and Lenza 2016, Murray 2014)) may be considered, or services inflation measures that more closely 

represent the non-traded element of domestic inflation (Casey 2018). The model parameters could be 

calibrated (Murray 2014) or estimated by maximum likelihood (Cuerpo, Cuevas and Quilis 2018) and 

Bayesian methods (Constantinescu and Nguyen 2017). 

Murray (2014) points out that the quality of the output gap extraction incorporating NKPC 

information (37) will depend on the number of assumptions and implicit judgements, including 

among others:  

• the correct specification and estimation/calibration of (37); 

• the choice of the inflation measure;  

• time-invariance and stability of NKPC over time;  

• the quality of trend-cycle decomposition of the inflation; 

• the subjective selection of penalty parameters 𝜆1 and 𝜆2. 

(b) The Okun’s law (Murray 2014, Cuerpo, Cuevas and Quilis 2018): 

                                                      

 

18 In some empirical applications the more distortionary first difference filter 𝑐𝑡
𝑒 =Δ𝑥𝑡 is used.  
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𝑐𝑡
𝑢 = −𝛼1𝑐𝑡 + 𝜀3,𝑡, (38) 

 
where 𝑐𝑡

𝑢 stands for the deviation of unemployment from its natural rate as set out in Bailey and Okun 

(1965), and the correlation with the output gap 𝑐𝑡 is expected to be negative. The idea of Okun’s law 

follows from the narrow notion of potential output as the full-employment level of output. To be 

consistent with the production function approach Murray (2014) suggested to apply the time-varying 

non-accelerating wage rate of unemployment (the NAWRU) as produced using a European 

Commission’s CAM (Havik, et al. 2014). Another possible candidate could be the NAIRU or the 

time-varying trend extracted by a set of UC trend-cycle decomposition state-space equations (Cuerpo, 

Cuevas and Quilis 2018).  

Similar to the NKPC case (37) the simplest form of equation (38) could be augmented with the inertia 

and other controls (Constantinescu and Nguyen 2017). Besides, a practitioner has to remember that 

the quality of the output gap augmentation depends very much on a set of highly uncertain 

assumptions (Murray 2014): 

• that the hypothesised Okun’s relation is correctly defined; 

• that the estimated coefficients are correct and not time-varying; 

• that the filter estimate of the NAWRU (the NAIRU) is accurate. 

(c) The Capacity utilization (Murray 2014, Cuerpo, Cuevas and Quilis 2018):  

𝑐𝑡
𝑐𝑢 = 𝛼1𝑐𝑡 + 𝜀3,𝑡 , (39) 

 
where 𝑐𝑡

𝑐𝑢 stands for the deviation of capacity utilisation from its long-term mean or assumed 

technologically efficient level and the correlation with the output gap 𝑐𝑡 is expected to be positive. 

The long-term mean could be estimated as an intercept term in the regression (39) or to follow the 

state-space representation as in Cuerpo, Cuevas and Quilis (2018). 

The incomplete definition of capacity utilisation data is the main drawback of this approach. The full 

sample time series on capacity utilisation is typically available for industry only, whilst services and 

construction surveyed only starting from 2011. The European Commission uses a synthetic indicator 

– combined capacity utilisation and business surveys (CUBS) indicator, which is used as a proxy for 

the unobserved true level of capacity utilization in the economies of the EU Member States (Havik, et 

al. 2014). CUBS combines capacity utilisation in the industry with economic sentiment indicators in 

the services and construction sectors. However, for a majority of EU member states (especially for the 

EU15), the CUBS series is taken to be equivalent to  capacity utilisation.  

Since there is no explicit link of (39) to theoretical foundations, the capacity utilisation in industry 

serves as a liable indicator of cyclical fluctuations that commoves with the output gap. This 

observation motivated Cuerpo, Cuevas and Quilis (2018) to perform a “beauty-contest” with other 

similar cyclical indicators that are instruments for the imbalances in different aspects of economic 

activity. 

To sum up, implementation of the bivariate filter rests on the estimation of the 𝛼1 coefficients in the 

above specifications. Noteworthy, there is no unique optimal specification for the above relationships 

as their empirical fit largely depends on the country and/or the time period empirically investigated 

(Blagrave, et al. 2015, Casey 2018). A different number of lags or additional explanatory variables 

can, therefore, be included in a case-by-case basis seeking to improve the empirical performance of 

the filter in identifying the cyclical and trend components of the economy‘s output. In addition, in 

order to combine and exploit the merits of each individual bivariate model, the above relations can be 
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jointly estimated as a system of equations (Murray 2014). The general case, i.e., the case with any 

number of variables and equations in the system, is presented next.  

Multivariate unobserved components models 

In this subsection, we present the multivariate filters by means of the combination of an explicit 

structural multivariate time series model and the Kalman filter as in Cuerpo, Cuevas and Quilis 

(2018). The structural decomposition provides an efficient way to estimate the output gap or, more 

generally, to decompose an observed time series as the sum of an arbitrary number of unobserved 

elements including supplementary variables whose stationary components are related to the output 

gap.  

The decomposition is based on the well-known (univariate) structural time series (STS) 

representation of a time series vector specified as a generic UC state-space model (24)–(26), see Clark 

(1987), Harvey (1985) and Durbin and Koopman (2012), among others. This method is rather general 

and flexible albeit keeping the number of parameters tightly controlled, in contrast with other 

econometric approaches (e.g., Vector Autoregressive model, VAR). 

As is common in the literature (Casey 2018, Cuerpo, Cuevas and Quilis 2018), the system of 

equations describing the laws of motion of the observed variables (GDP, inflation rate, etc.) and 

unobserved variables (potential output, natural rate of unemployment, etc.) could be compactly 

represented in state-space form using matrix notations. In this paper we use the general multivariate 

Gaussian form based on Durbin and Koopman (2012): 

Signal: 𝑦𝑡 = 𝐻(𝛼)𝑆𝑡 + 𝜈𝑡 , 𝜈𝑡~𝑁𝐼𝐷(0, Σ𝜈), (40) 

State: 𝑆𝑡 = 𝐹(𝜙)𝑆𝑡−1 + 𝑢𝑡, 𝑢𝑡~𝑁𝐼𝐷(0, Σ𝑢), 𝑆1~𝑁(𝑎1, 𝑃1), (41) 

where 𝑡 = 1, 2, … , 𝑇 denotes time, 𝑦𝑡 is a 𝑝 × 1 vector of 𝑝 observed endogenous variables and is 

called the observation (measurement or signal) vector; 𝑆𝑡 is a 𝑚× 1 vector of 𝑚 unobserved states 

and is called the state (transition) vector. Error terms 𝜈𝑡 and 𝑢𝑡 are assumed to be normally distributed 

white noise processes that are serially independent at all time points. 𝑆1 is the initial state vector, 

which depends on the calibrated choice of initial states mean vector 𝑎1, variance matrix 𝑃1 and is 

assumed to be serially independent with 𝜈𝑡 and 𝑢𝑡. 𝐻(𝛼) denotes a matrix of coefficients, regulating 

the relations between the observed and the unobserved variables in the system. 𝐹(𝜙) denotes a matrix 

of coefficients regulating the autoregressive law of motion of the state variables in the system. 𝛼 and 

𝜙 collect the unknown parameters that a practitioners needs to estimate. Variance-covariance matrices 

of the extended state-space model (40) and (41) are often assumed to be diagonal with some zero 

restrictions for the identities. The assumption of orthogonality, however, could be relaxed at the cost 

of making shock identification more difficult (Clark 1987). For example, to represent hysteresis in the 

trend dynamics the shocks that determine the long-term trend (𝜀2,𝑡) would need to be correlated with 

those that drive its short-term rate of growth (𝜀𝜇,𝑡  ), while the dependence between demand and supply 

shocks (e.g., as in BN filter) requires 𝜀2,𝑡 and 𝜀1,𝑡 to be (negatively) correlated. All the parameters in 

the system may be also time-varying and include vectors of exogenous variables similar to (35).  

The matrix of coefficients can be estimated by Maximum Likelihood conditional on distributional 

assumptions about the disturbance terms’ vectors. The distributional assumptions in our case are that 

they are mutually independent and follow the multivariate normal distribution with zero mean and 

constant variance-covariance matrix (Cuerpo, Cuevas and Quilis 2018). Another prevalent solution is 

to estimate the parameters by Bayesian methods (Melolinna and Tóth 2016, Constantinescu and 
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Nguyen 2017). Given estimated or calibrated values for the coefficients of the model and initial 

conditions, filtered estimates for the unobserved state variables are obtained through a recursive 

algorithm known as the Kalman filter (Kalman 1960) the details of which are presented in Appendix 

B.  

The general specification of the state-space model (40) and (41) means that structural links of 

observable variables with cyclical and trend components are a straightforward expansion of 

corresponding vectors and matrices. For example, Casey (2018) includes additional observable 

variables aiming to expand the baseline univariate model with additional economic information about 

the cycle. The variables under consideration cover measures of private sector credit growth (Borio, 

Disyatat and Juselius 2017), residential property prices, real interest rates, real effective exchange 

rates and current account balance (Darvas and Simon 2015), all subject to alternative measurement 

adjustments and modifications. In addition, Cuerpo, Cuevas and Quilis (2018) considered fiscal 

variables, such as public debt, general government primary balance and taxes, among others. The 

inclusion of fiscal variables is especially relevant to the scope of IFI practitioners.   

To conclude, the main advantage of the multivariate approach is that it explicitly draws on well-

established relationships between the output gap and other macroeconomic variables (Pybus 2011). 

Nevertheless, estimates produced using this MUC approach are inevitably subject to the set of 

conditioning links and implicit assumptions that need to be imposed in advance. 

Principal Components Analysis 

Principal Component Analysis (PCA) is another conventional empirical tool that helps identify the 

latent source of cyclical variation in the economy’s output. PCA is a statistical unsupervised learning 

approach that identifies common determinants of a number of variables using linear combinations 

(components) of the 𝑘 cyclical variables 𝑐𝑖,𝑡, 𝑖 = 1,2,… , 𝑘 in order to model their variance-covariance 

structure. The unsupervised nature of the approach means that the output gap 𝑐𝑡 does not guide the 

signal extraction from 𝑐𝑖,𝑡 as a response in the form of equation (35). However, the extracted first 

principal component could later be used as a latent factor exactly in the same way we did before. A 

set of linearly uncorrelated and orthogonal linear combinations that are ordered in terms of variance 

are generated and are called principal components. In terms of ordering, the first element contributes 

the most to the sample variability..  

Various studies apply the PCA method to draw a common signal from a range of cyclical indicators 

within the context of output gap estimation. Studies include Pybus (2011), Ódor and Kucserová 

(2014), Murray (2014) and Casey (2018). The studies consider a range of cyclical indicators, 

including survey measures of capacity utilization, recruitment difficulties, inflation or wage earnings 

growth. According to Pybus (2011), the first principal component, i.e., the linear combination with the 

greatest variance, can be interpreted as a proxy for the output gap. This assumes that the output gap is 

the most important common determinant of the cyclical indicators. 

The first principal component is a vector of loadings that maximizes the quadratic form: 

max
𝜆1
𝜆1
′ 𝐶′𝐶𝜆1, subject to 𝜆1

′ 𝜆1 = 1, (42) 

 

where C is the 𝑘 × 𝑇 matrix of cyclical components. The solution of (42) is a standard matrix algebra 

– the value of the objective function is an eigenvalue and 𝜆1 is the corresponding eigenvector.  

An important aspect of the process concerns how the cyclical indicator variables used are standardised 

and demeaned. This should be done in such a way as to ensure that each indicator has a comparable 
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contribution to the total sample variability. Appropriate scaling of the estimated principal 

component(s) is also crucial for a correct output gap inference. On the other hand, the standardization 

procedure produces an output gap with zero mean and unit variance. Therefore, to obtain output gap 

estimates that are comparable with other methods in real terms, the output gap series obtained from 

PCA requires rescaling by the statistics, for instance, of the HP-filtered output gap (Ódor and 

Jurašekova Kucserová 2014). Alternatively, the cyclical indicators could be decomposed by any 

univariate trend-cycle decomposition method discussed above and then standardized by a standard 

deviation. Finally, PCA can be complemented with the ‘Aggregate Composite’ method (Pybus 2011), 

where instead of estimating the cyclical indicators’ weights on the principal component(s), they can 

be explicitly set by the user. 

Accounting for production 

The most widespread method of estimating potential output practised by EU IFIs is the Production 

fFunction (PF) approach (Fig. 4). It is also widely applied by central banks and international 

organizations, including the European Commission: using the CAM (Havik, et al. 2014). The 

advantage of the PF method is its direct link to economic theory. The supply-side driven neoclassical 

Solow-Swan growth model is invoked. This means that the method is more structural and 

comprehensive compared to other approaches. Hence, the PF approach allows for a more direct link to 

sources of structural information and for an easier interpretation of the source of changes in the output 

gap or potential output.  

While the PF approach is relatively more structural and comprehensive compared to other approaches, 

it is not free from some of the limitations present in other methods. The bottom-up feature of the 

approach does not filter actual output directly, but it does decompose output into a number of 

components that are themselves individually filtered (Butler, 1996). The method can therefore be 

considered a semi-structural multivariate filter. This can mean that problems associated with filtering 

output are in some senses shifted to the trend estimates of inputs (Cerra and Saxena 2000). 

The general idea of a production function decomposition is to split the potential output into three 

components: a labour input, a capital input and a total factor productivity (TFP), each of which could 

be further decomposed into even smaller subcomponents to reflect demographic changes, capital or 

TFP composition. There are various functional types of the production function. The majority of 

practitioners prefer the simplest Cobb-Douglas (CD) type and a few applications consider a more 

general constant elasticity of substitution (CES) type, where CD is a particular case. Following the 

majority choice, let us consider an aggregate Cobb-Douglas constant-returns-to-scale production 

function19 as determined in the CAM (Havik, et al. 2014): 

𝑌𝑡
∗ = (𝑈𝐿𝑡𝐿𝑡𝐸𝐿𝑡)

𝛼
(𝑈𝐾𝑡𝐾𝑡𝐸𝐾𝑡)

1−𝛼
= 𝐿𝑡

𝛼𝐾𝑡
1−𝛼𝑇𝐹𝑃𝑡, 

(43) 

 

where 𝑌𝑡
∗ is the potential output, 𝑇𝐹𝑃𝑡 is the level of total factor productivity (Solow residual), 𝐿𝑡 is 

the labour input, 𝐾𝑡 is the physical (fixed assets) capital stock, which we will refer to as capital, and α 

is the labour share of income, (𝑈𝐿𝑡, 𝑈𝐾𝑡) are the corresponding degrees of excess capacity, and (𝐸𝐿𝑡, 

                                                      

 

19 Since the production function depends only on the primary inputs ignoring the explicit use of intermediate inputs 

(materials, energy, etc.), the correct name for the PF would be a value-added function (OECD 2001).  
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𝐸𝐾𝑡) the levels of efficiency. TFP which summarises both the degree of utilisation of factor inputs as 

well as their technological level is set equal to: 

𝑇𝐹𝑃𝑡 = (𝐸𝐿𝑡
𝛼𝐸𝐾𝑡

1−𝛼)(𝑈𝐿𝑡
𝛼𝑈𝐾𝑡

1−𝛼). (44) 

 

The parameter α is often calibrated to the country-specific average in-sample ratio of wage costs and 

value added in the economy. To ensure the comparability of the countries it could be also fixed to a 

particular value for all countries (e.g., in the CAM it equals 0.63 – the average wage share for the 

EU15 over the period 1960–2003).  

Total factor productivity is the portion of output not explained by primary inputs. It is computed as a 

Solow residual in an agnostic way, i.e., often there is no explicit narrative behind the estimates 

although there could be. Murray (2014) notes that (43) is consistent with a number of assumptions: 

• constant returns to scale; 

• the marginal productivity of each primary factor is proportional to its average productivity; 

• technology experiences Hicks, Harrod, and Solow neutrality at the same time; 

• the unit elasticity of substitution between the capital and labour inputs (a particular CES 

case); 

• under the additional assumption of perfect competition in the product market, factors are paid 

their marginal products, implying the stable steady-state labour share in factor inputs income 

allowing to calibrate the parameter α to the observed data.  

The assumption of perfect competition could be relaxed though, implying that the part of value-added 

that goes to factor inputs income is deduced by the average mark-up of the imperfectly competitive 

market. Assuming that in the long-run mark-up is constant, implies that in the case of CD technology 

the difference will be absorbed by the constant part of Solow residual. 

Capital inputs are often a challenge from a conceptual and data perspective even in advanced 

economies (Box 4). The capital input time series tend to be based on a wide range of assumptions and 

calibrated parameters, including the rate and form of depreciation profiles and initial values. 

Approaches such as the CAM see growth in the level of the actual net capital stock as driving the 

capital contribution to potential output (Casey 2018). The actual levels of the capital input are 

implicitly considered as sustainable (unsmoothed as in Havik et al. (2014)). However, they may not 

be sustainable. For example, overinvestment in housing can lead to boom-bust dynamics in net capital 

stock series, hence inflating potential output and resulting in unsustainable (and cyclical) development 

of the potential output in the long-run. This can be especially evident in small open economies, 

whereas a neoclassical Solow-Swan growth model for closed economies ignores the international 

trade flows and the mobility of primary inputs.  

Bearing in mind the difficulties with the determination of the relevant capital inputs (Box 4), Butler 

(1996) proposes focusing on the definition of the marginal product of labour from which the actual 

and potential outputs after logarithmic transformation could be decomposed into the sum of labour 

and the marginal product of labour inputs: 

𝑀𝑡 = 
𝜕𝑌𝑡

∗

𝜕𝐿𝑡
= 𝛼

𝑌𝑡
∗

𝐿𝑡
, 𝑦𝑡

∗ = 𝑙𝑡 +𝑚𝑡 − 𝛼, 
(45) 

 

where small letters denote the log-transformed variables, and 𝑚𝑡 is the marginal product of labour. 

The economic assumptions underpinning this particular decomposition are that the production 
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technology is CD in labour and in all other inputs and that markets are perfectly competitive. If these 

assumptions are violated, the variable 𝑚𝑡 might be interpreted as a scaled average product of labour, 

rather than the marginal product of labour (Butler 1996).  

Box 4. Which capital? 

In terms of the measurement of the capital stock, the perpetual inventory method (PIM) is often 

used. The problem of the CAM in applying the method is a wide range of rough assumptions and 

conceptual issues, which are at odds with the notion of the potential output. All essential issues are 

broadly discussed in the OECD manual on Measuring capital (OECD 2009). Figure 7 depicts an 

integrated system of links between the key capital stocks: gross, net and productive; capital flows: 

investments, value and efficiency depreciation, capital services; and national accounts: 

accumulation, production, income and balance sheet. 

Conceptually, any capital asset represents two complementary economic aspects: (1) the wealth or 

market value of the asset and (2) the contribution of capital to production. First, the net or wealth 

capital stock measures the market value of the existing physical capital, while the gross capital 

stock measures the hypothetical value of accumulated assets being treated as new. In the system of 

national accounts, most attention is paid to the assessment of gross and net capital stocks, which 

are used to derive the loss of an asset value (depreciation) as it ages. This is typically associated 

with the age-price profile of the asset. This definition of an asset’s value is needed to consistently 

define the national wealth and the income accounts. However, it is not necessarily a relevant 

concept for a production function approach. In particular, the value of an asset may not be relevant 

for the actual production derived from that asset. Nevertheless, data limitations and the complexity 

of deriving more appropriate measures mean that the less meaningful capital stock measure is 

typically relied on in production function models such as the CAM (Havik, et al. 2014) and in 

similar methodologies used by other institutions.  

On contrary, the productive stock expressed in efficiency units allows the practitioners to impute 

the flow of capital services used in production. Past investment in every group of assets is 

accumulated after correcting for the efficiency loss of the asset, which is linked to the age-

efficiency profile. Conventionally, unobserved productive capital services are assumed to be 

Figure 7 – capital measures in the system of national accounts 

 

Source: Measuring capital (OECD 2009) 
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proportional to the total productive capacity of the asset, bearing in mind the intensity with which 

the productive capital was actually used for the production purposes.  

These two primary concepts differ in the chain-linked aggregation across different assets, where 

market prices are used to chain-link the net capital stocks and derive depreciation, while the user 

cost of capital is applied to aggregate the productive capital and obtain the flow of capital services. 

Despite their differences, Figure 7 shows the complementarity of the approaches in the system of 

national accounts. Both capital services and capital stock are key inputs for the household 

consumption: services determine the value of the capital services rental flow – a part of the other 

income, and stock – the market value of capital assets, the main part of non-human wealth 

component. Unfortunately, the estimates of the productive stock and capital services are still an 

optional part of the ESA 2010. Besides, a practitioner may question the PIM assumptions used by 

the Eurostat, national statistical agencies or the European Commission to estimate the net capital 

stock. Therefore, it is operational to impute the whole set of capital measures and make them 

country-specific (Celov 2015).  

Following the system of national accounts, let us assume that the total capital formation could be 

divided into dwellings, structures, machinery and equipment, transport and intangible assets. The 

estimation of capital measures for each of these assets by PIM then requires a particular set of 

country-specific parameters and data. First, the average service lifetime of the assets 𝑇𝑎, which 

could be based on an empirical research or calibrated to the studies in similar countries. Second, a 

retirement (survival) pattern 𝐹𝑎,𝜏, which describes how assets of age 𝜏 are withdrawn from the 

service (scrapped, discarded). This survival function is associated with the mortality function 𝑓𝑎,𝑠, 

which is assumed to follow a specific distribution (e.g., a log-normal as in France, Estonia or 

Finland). Practical considerations suggest to choose the standard deviation from [𝑇𝑎 4⁄ , 𝑇𝑎 2⁄ ], for 

example, 𝑇𝑎 4⁄  will show a more peaked mortality functions around the average service life-time 

of the assets. The long-normal distribution mean then is 𝜇𝑎 = log(4 ⋅ 𝑇𝑎) − 0.5 ⋅ 𝜎
2, while 

standard deviation 𝜎 = √log(1 + (1 4⁄ )2) is the same for all assets. The assumed retirement 

pattern and gross-fixed capital formation for each of assets are the only inputs required by PIM to 

derive the gross capital stock: 

𝐾𝑎,𝑡
𝐺 = ∑ 𝐹𝑎,𝜏 ⋅

𝐼𝑎,𝑡−𝜏
𝑁

𝑃𝑎,𝑡−𝜏,0
𝐼

𝑇
𝜏=0 , (46) 

 

where 𝑇 is the maximum service life of asset type 𝑎 (a practitioner may assume the maximum cut-

off to be 1000 years or less for all assets); 𝐼𝑎,𝑡
𝑁  is the gross nominal expenditure on asset 𝑎 in period 

𝑡 deflated by the prices, when the asset was new 𝑃𝑎,𝑡,0
𝐼 . 

Third, the loss in productive capacity of a capital good over time is shown in its age-efficiency 

profile or the rate at which the physical contributions of a capital good to production decline over 

time, as a result of wear and tear. For this purpose, a practitioner may use hyperbolic age-

efficiency profiles adjusted for the chosen log-normal mortality pattern: 

ℎ𝑎,𝜏 = ∑ 𝑔𝑎,𝑠 ⋅ 𝑓𝑎,𝑠
𝑇
𝑠=𝜏 = ∑

𝑠−𝜏

𝑠−𝛽𝑎𝜏
⋅ 𝑓𝑎,𝑠

𝑇
𝑠=𝜏 , (47) 

 
where 𝛽𝑎 ∈ [0, 1] is the efficiency discount factor, which determines a form where assets lose 

little of their productive capacity during the early stages, but experience rapid loss of productive 

capacity towards the final stage of their service lives. Now, using (47) the productive capital stock 

for the asset 𝑎 is defined by PIM as: 
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𝐾𝑎,𝑡
𝑃 = ∑ ℎ𝑎,𝜏 ⋅

𝐼𝑎,𝑡−𝜏
𝑁

𝑃𝑎,𝑡−𝜏,0
𝐼

𝑇
𝜏=0 ⇒ 𝐾𝑎,𝑡

𝑃 ≅ 𝐾𝑎,𝑡−1
𝑃 (1 − 𝛿𝑎,𝑡) + 𝐼𝑡

𝑅, (48) 
 

where 𝐼𝑡
𝑅 is the real expenditure on asset 𝑎 in period 𝑡, 𝛿𝑎,𝑡 is the time-varying depreciation rate, 

and the evolution of productive capital is approximated by a geometric profile. If there is no 

efficiency loss 𝑔𝑎,𝑠 = 1 the chain-linked volumes of productive and gross (as new) stocks are 

identical. Market values of both are obtained by multiplying with the purchase prices of the new 

assets 𝑃𝑎,𝑡,0
𝐼 .  

Fourth, the age-price profile 𝑧𝑎,𝜏 could be recursively obtained from the age-efficiency profile 

ℎ𝑎,𝜏 assuming a country-specific discount rate 𝑟 for investments: 

𝑧𝑎,𝜏 =
𝑃𝑎,𝜏,0
𝐼

𝑃𝑎,𝑡,0
𝐼 = 

∑ ℎ𝑎,𝑠+𝜏⋅(1+𝑟)
−(1+𝑠)

𝑠

∑ ℎ𝑎,𝑠⋅(1+𝑟)
−(1+𝑠)

𝑠
. (49) 

 

The derived age-price profile again could be approximated by the geometric or declining balance 

model of depreciation, where the key procedure is to assess the depreciation rates from 𝑧𝑎,𝜏 =

(1 − 𝛿𝑎,𝑡)
𝜏
. Using the age-price profile a practitioner then gets the net capital stock at current 

prices (the residual market value): 

𝐾𝑎,𝑡
𝑁 = ∑ 𝑃𝑎,𝜏,0

𝐼 ⋅
𝐼𝑎,𝑡−𝜏
𝑁

𝑃𝑎,𝑡−𝜏,0
𝐼

𝑇
𝜏=0 = 𝑃𝑎,𝑡,0

𝐼 ∑ 𝑧𝑎,𝜏 ⋅
𝐼𝑎,𝑡−𝜏
𝑁

𝑃𝑎,𝑡−𝜏,0
𝐼

𝑇
𝜏=0 . (50) 

 

Comparing (48) and (50) shows that the two different concepts of capital are the same if and only 

if the age-price and age-efficiency profiles are identical. This is a strong simplifying assumption 

often violated in empirical tests.  

Fifth, to initialize the PIM a practitioner needs to find valid initial values for the capital stocks. For 

the economies in transition, which are from the steady-state growth, it is not recommended to 

apply the approximate formula 𝐾𝑎,0 = 𝐼𝑎,0 
𝑅 (𝛾𝑎 + 𝛿𝑎)⁄  using Harberger suggestion to account for 

in-sample average output growth 𝛾𝑎 and depreciation rate 𝛿𝑎. It is more operational to assume that 

the investments prior to the sample where the same as 𝐼𝑎,0 
𝑅 and allow the PIM to start from say 100 

years before the initial year of the sample.  

Finally, to obtain the capital services – the relevant capital input into a production function – a 

practitioner first computes the real rate of return on capital with capital gains less imputed gains 

from the housing (with depreciation) and the depreciation of the public sector capital stock. 

Denoting the capital income generated by the private sector without housing services as 𝑌−𝑑,𝑡
𝐾  a 

practitioner then gets the imputed rate of return on capital: 

𝑅𝑡
𝑖𝑚𝑝

=
𝑌−𝑑,𝑡
𝐾 −∑ 𝑃𝑎,𝑡−1

𝐼
𝑎 (𝛿𝑎,𝑡(1+𝜋𝑎,𝑡)−𝜋𝑎,𝑡)𝐾𝑎,𝑡−1

𝑃

∑ 𝑃𝑎,𝑡−1
𝐼

𝑎 𝐾𝑎,𝑡−1
𝑃 , (51) 

 

where 𝜋𝑎,𝑡 is the (smoothed) inflation of the asset prices 𝑃𝑎,𝑡
𝐼 , 𝛿𝑎,𝑡 denotes depreciation rate, 𝐾𝑎,𝑡

𝑃  is 

the productive capital stock defined in (48). Then, the user cost of capital for an asset 𝑎 is: 

𝑃𝑎,𝑡
𝐾 = 𝑃𝑎,𝑡

𝐼 (1 + 𝑅𝑡
𝑖𝑚𝑝

− (1 + 𝜋𝑎,𝑡)(1 − 𝛿𝑎,𝑡)), (52) 
 

which are used to determine the capital shares 𝜔𝑎,𝑡 = 𝑃𝑎,𝑡
𝐾 𝐾𝑎,𝑡−1

𝑃 ∑ 𝑃𝑎,𝑡
𝐾 𝐾𝑎,𝑡−1

𝑃
𝑎⁄  for Törnqvist 

aggregation to obtain the sought capital services: 

Δ log𝐾𝑡
𝑆 = ∑ Δ log𝐾𝑎,𝑡

𝑃 (𝜔𝑎,𝑡 +𝜔𝑎,𝑡−1)/2𝑎 . (53) 
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The last step completes the roadmap depicted in Figure 7.  

 

We now turn to the labour input in the context of the PF approach. Labour input is typically defined in 

terms of total hours worked. The trend of labour input 𝐿𝑡 consists of several subcomponents: 

𝐿𝑡 =  𝑃𝑂𝑃𝑡 ⋅ 𝑃𝑅𝑡 ⋅ (1 − 𝑁𝐴𝑊𝑅𝑈𝑡) ⋅ 𝐻𝑡, (54) 

 

where 𝑃𝑂𝑃𝑡 is the actual population of working age (20–74 age group). The working age population 

is not de-trended implying a zero gap. The 𝑁𝐴𝑊𝑅𝑈𝑡 is the Non-Accelerating Wage Rate of 

Unemployment; 𝑃𝑅𝑡 is a trend of participation rate; and 𝐻𝑡 denotes a trend of hours worked. The 

contribution from labour inputs and the largest portion of criticism is often focused on the 

identification of the NAWRU (Casey 2018). The trend unemployment rate (NAWRU) in the CAM is 

based on an “accelerationist” Philips curve (Havik, et al. 2014). The basic idea originates from the 

application of multivariate unobserved components model, where the signal equation is a particular 

modification of the (new) Keynesian Philips curve (36) expressed in terms of real or nominal unit 

labour costs. 

Despite the more structural and detailed decomposition of the output gap, there are also disadvantages 

of the method. This is relevant in, but not limited to, applications such as the EU CAM (Havik, et al. 

2014). For example, the method shares the end-of-sample biases that affect the underlying de-trending 

techniques that are used for detrending the subcomponents (Cerra and Saxena 2000). The potential 

output estimates are affected by the measurement errors in primary inputs and their pro-cyclicality 

due to the problems assessing the NAWRU and unsmoothed investments being used as inputs to PIM. 

The approach may also suffer from the omitted variable bias if the value-added input is not corrected 

for the imperfectly competitive market’s mark-ups (Willman 2002). Fortunately, the disadvantage of 

the a-theoretic nature of TFP as Solow residual in CD production function case turns into a feature 

allowing to absorb all abovementioned deviations in definitions, assuming that the long-run imperfect 

markets’ mark-ups, the rates of effective use of primary inputs are constant or slowly varying with 

exponential trends.   

The next two subsections shed more light on what are the key problems envisaged by the EU IFIs 

when replicating the EU CAM. Some practical solutions are offered to help overcome difficulties 

faced with the still prevalent production function approach. 

The Commonly Agreed Methodology (CAM) 

Production function approaches like the CAM share some important theoretical features. First, there is 

the key institutional role of the CAM’s estimates for the assessment of national fiscal policy under the 

Stability and Growth Pact. Second, there is the method’s superior reliability relative to that of other 

estimates produced under approaches by international institutions such as the OECD and IMF, as 

found empirically by Mc Morrow, et al. (2015). Third, there is a fair ability for CAM-based estimates 

to co-move with economic cycles. For example, Atanas, Raciborski and Vandermeulen (2017) find 

that the CAM’s output gap estimates are significantly correlated with a number of economic and 

business cyclical indicators for most EU member states (applying the so-called “plausibility tool”). 

Fourth, there is the PF’s  advantage in terms of yielding greater economic meaning, especially when 

compared to univariate statistical techniques. These and other features discussed in Havik, et al. 

(2014) justify the practical use of the CAM’s estimates for benchmarking and/or their reproduction 
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under a different scenario. At the same time, the noted practical shortcomings remain as does the need 

for tailor-made country-specific alternatives.  

Other attempts, within the production function framework, include formulation and estimation of 

models with alternative production functions. For example, the multi-sector model with imperfect 

competition by Willman (2002) advanced further within the New Multi-Country model, developed at 

the ECB (Anderton, et al. 2014, Celov 2015). The former assumes two alternative production 

functions: a ‘Cobb-Douglas’ and a ‘Constant Elasticity of Substitution’ (CES). The latter builds on a 

CES production function and allows for a flexible Box-Cox functional form for the technological 

progress. Though theoretically sound, the analytical complexity and moderate empirical performance 

of these approaches sets limits on the extent to which wider use of these methods across the Network 

of EU IFIs may arise.  

 

Many EU IFIs try to replicate the CAM. 

According to the surveyError! Reference source not 

found.Error! Bookmark not defined. of the Network of 

EU IFIs, 9 of 20 respondents have tried to 

replicate the production function approach 

based on the CAM (Havik, et al. 2014) using 

information and software obtained from the 

CIRCABC website20. In some cases, this has 

proven challenging. The key problem cited by 

EU IFIs is one of the frequent and substantial 

methodological changes that are poorly 

communicated. In addition, the results are 

often found to be implausible for a number of 

countries. Many cite the fact that revisions to output gap and potential output estimates are often pro-

cyclical (Fig. 8). Ódor and Kucserová (2014), Casey (2018) among others highlighted the increased 

computational complexity of the CAM. Also cited is the high degree of sensitivity of the estimates to 

the initial choice of model parameters, which are set by the European Commission staff and are often 

changed in an opaque way. Another issue is the overall increased uncertainty of the estimated output 

gaps. Other problems cited relate to the timing of output gap publication by the European 

Commission and, of course, end-point issues. 

Ódor and Kucserová (2014) provided a comprehensive list of weaknesses of the CAM approach in the 

context of the small and open economies:  

• small sample sizes used to estimate long-term trends with many structural breaks;  

• a high uncertainty regarding data inputs, especially the notion and assessment of capital data;  

• an empirical implausibility of the neoclassical Solow-Swan growth model and its assumptions 

(e.g., a perfect competition in the product and labour markets);  

• downplaying the role of international capital and labour mobility as well as the impacts of 

current account and financial account imbalances.  

                                                      

 

20 https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp  

Figure 8 – Difficulties replicating the  

methodology used by the European 

Commission 

 

Source: the Network of EU IFIs 
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All of these aspects may lead one to conclude that the CAM eventually requires addressing country-

specific issues in a diverse EMU. Therefore, IFIs should adopt country-specific methods based on the 

best practices of the Network of EU IFIs and other international institutions (Ódor and Jurašekova 

Kucserová 2014). It is worth noting that the EC’s researchers have reflected criticisms of the CAM to 

various extents and have sought to improve the methodology in recent years by moving to an 

incorporation of more country-specific measures of potential output and the output gap.  

Frale and De Nardis (2017) emphasized the complexity to determine the required data inputs and to 

apply the CAM in the course of the recent global economic crisis. The long-lasting recession and 

divergent recovery may have permanently damaged the potential productive capacity21 of the EU 

economies implying a hysteresis a la Blanchard and Summers (1987) and increasing the difficulty of 

distinguishing between the temporary (cyclical) component and the trend (structural) component of 

GDP growth. However, an option in the CAM that is often applied is to force the output gap to close 

at the end of the forecast period (Casey 2018). This, by design, can rule out the possibility of 

persistent output gaps and may give an overly benign impression of the path of the economy over the 

forecast horizon, which may not always be appropriate. There may, for example, be strong reasons to 

believe that the trajectory of the economy over the immediate forecast horizon will not  tend towards a 

closed output gap. Besides, Frale and De Nardis (2017) noted that methods characterised by standard 

economic conditions and historic cyclical frequencies, might not fit the anomalous cyclical 

environment seen after 2009. Finally, the business survey indicators like capacity utilisation rate or 

CUBS used as a supplementary cyclical variable may have become less informative in the last few 

years, as the recent crisis may have changed the assessments and expectations of economic agents 

about what is considered a normal level of economic activity. Therefore, more adaptive and flexible 

semi-structural approaches like MUC or suite of models are useful to consider. 

Casey (2018) discussed country-specific issues related to the applicability of the production function 

methodology for small and/or open economies. The author considered the appropriate measurement 

and modelling of the production function inputs, i.e., the imputed values for capital, trend-cycle 

decomposition of labour inputs (in particular, pro-cyclical estimates of NAWRU) and the treatment of 

the total factor productivity as a Solow residual. For example, external trade balance or current 

account balance data provide essential information when analysing open economies. The ability to 

absorb excess demand shocks should not be disregarded. Darvas and Simon (2015) showed that the 

size of revisions to CAM-based output gap estimates is correlated with the variability of the current 

account balances prompting about omitted absorption cycle variables in the CAM. Concerning capital 

measurement, Anderton, et al. (2014) pointed to the importance of the distinction between housing 

and non-housing capital in the case of countries with construction booms and busts, not to mention the 

conceptually opaque definition of the capital inputs applying the capital data series presented in 

AMECO. However, adding analogous economy-wide considerations to the production function 

approach leads inevitably to the formulation of a small-scale Dynamic Stochastic General Equilibrium 

(DSGE) models (Ódor and Jurašekova Kucserová 2014). Similarly to the CAM, the use of DSGE 

models is limited due to their increased analytical complexity and moderate empirical performance, 

which again advocates using more adaptive semi-structural methods. 

All the findings regarding pro-cyclicality in inputs are supported by IFIs colleagues from other 

institutions. For instance, Huovari, Jauhiainen and Kekäläine (2017) scrutinizing the CAM estimates 

                                                      

 

21 In some recent papers the slowdown in productivity growth in the euro area is explained by the misallocation of primary 

production factors (Dias, Marques and Richmond 2015, Gamberoni, Giordano and Lopez-Garcia 2016). 



Potential output and the output gap  

 

 

48 
 
 

for Finland concluded that the Finnish output gap estimates vary greatly with assumptions, especially 

with those made on the trend unemployment (pro-cyclical NAWRU estimates) and the participation 

rate. All these variations are then reflected in the cyclically adjusted budgets (CAB) implying that the 

CAM does not ensure plausibility and robustness criteria for the CAB to play a role as a binding rule. 

Fioramanti (2016) analysing similar problems for Italy has found that a more complicated model with 

a lot of possible sources of microscopic differences (e.g., data and projections revisions, changes in 

model assumptions) leads to considerable consequences in terms of policy implication.  

Best practices of the network 

The critical issues discussed above have led to a number of papers studying the uncertainty underlying 

the European Commission’s (EC) official estimates of the particular economy’s potential output and 

examining their sensitivity to alternative deviations from the official implementation framework. 

Axioglou (2017) studies the application of the CAM to the Greek economy and points to considerable 

uncertainties, which stem from parameter estimation uncertainty as well as the accumulating impact 

of a sequence of methodological choices and technical adjustments underlying the EC’s final 

estimates. 

More specifically, Axioglou (2017) finds substantial estimation uncertainty of both inputs of 

production that are subject to estimation, i.e., potential labour and the trend in TFP. This reflects the 

lack of a strong empirical ‘Phillips Curve’ relationship between unemployment and wage inflation (in 

case of potential labour) and a weak relationship between capacity utilization and total factor 

productivity. In the absence of strong identifying relationships, parameter estimation shows sensitivity 

to the imposition of parameter restrictions and/or the choice of Bayesian priors. Both effects, though 

individually small, may add up in the final estimates, as the aforementioned production inputs are 

estimated individually.   

Post-estimation adjustments of the official methodology due to structural unemployment ‘anchoring’ 

and/or ‘demeaning’ of the NAWRU were also found to affect the Greek vintage. However, anchoring 

was found advantageous to reduce the revisions and pro-cyclicality of the structural labour estimates 

in other countries. On contrary, some elements of the official methodology were found with negligible 

impacts, such as the choice of the smoothing parameter in the implementation of the HP filter on the 

working hours or the participation rate series. This is due to the empirical behaviour of these series in 

the data and their small contribution to the evolution of the potential labour series (Axioglou 2017). 

The choice of the parameter 𝛼 of the CD production function had only a minor impact on the 

cyclicality of the estimated total factor productivity. This mainly reflects the low degree of the 

cyclicality of the labour/capital ratio, conjectured in the study, based on visual inspection of the 

relevant data, not only for Greece, but also for other EU countries. This is an anticipated result 

considering that the TFP growth is conventionally re-assessed conditional on the changes in the 

parameter 𝛼. If a practitioner makes the technological growth endogenous and fixes the growth rate, 

the changes in the parameter  𝛼 then results in the rotation of the level of the potential output around 

the mid-sample point and a substantial revision of the output gap estimates at the sample ends. 

Consequently, Axioglou (2017) shows that the effect of 𝛼 on the potential output estimate mainly 

depends on the deviation between potential and actual labour. In turn, this suggests that the effect of 𝛼 

can be rather different for countries and periods with large deviations between observed and potential 

labour, such as in Greece over the recent years. 
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Murray (2014), describing the PF approach, points to two crucial judgements associated with the 

estimates of the production function. The first is the choice of aggregated production technology – an 

economic theory that relates the outputs to inputs. The second is the choice of trend-cycle 

decomposition of primary factor inputs and TFP, which are to be aggregated using the specified 

production technology. Following the simplest majority choice, Murray (2014) applies the CD 

technology (43), the functional form of which is attractive in terms of computation and robustness to 

omitted variable problems. An alternative model (Lunsing 2011, Celov 2015) is to consider CES 

technology that allows a practitioner to test the relevance of CD restrictions, the neutrality cases of the 

technology and resolve medium-run debate between substitutionary (capital fundamentalism inspired 

endogenous growth) or complementary (Acemoglu-augmented technological process) effects varying 

the primary inputs (Celov 2015). However, there is a little empirical evidence that supports the use of 

one technology over the other when the objective is to forecast potential GDP or factor shares, 

provided the labour income share is stable (Miller 2008). The same typically applies to the multi-

sectoral decomposition of the gross value-added, where the deeper sectoral story does not necessarily 

imply better predictions of the potential output at the aggregate level. 

Murray (2014) claims that it is reasonable to assume that the non-market sector (a large portion of 

which corresponds to the public sector) does not generate the gap as such. Then the output gap 

associated with the remaining market sector will be, in general, of a greater magnitude. On the other 

hand, Celov (2015) shows that, for Lithuania’s case, the gap in the non-market sector actually exists 

and is different in phase and amplitude from the market sector gap. In fact, the assessed market sector 

gap closed faster (around 2012) after the crisis of 2009, while the non-market sector’s gap was still 

negative at the end of 2013 due to the discretionary pro-cyclical measures of fiscal consolidation. The 

aggregate level result, however, was almost identical to the one sector assessment. The idea that some 

subsectors of the economy could experience no relevant gap is considered in Casey (2018), where the 

author excludes the sectors of the Irish economy, where the value-added is produced by large foreign-

owned multinational enterprises. This warrants a focus on the domestic sectors of the economy.  

When the production technology is selected the further non-structural choice is to pick a particular 

trend-cycle decomposition method for the factor inputs and TFP. The vast majority of practitioners do 

this by using filters of some sort. This choice varies from already discussed univariate filters and also 

include their multivariate extensions. The multivariate approach allows a practitioner to include 

additional structural information describing the evolution of the TFP and the primary input factors of 

the production (Butler 1996, Murray 2014). Besides, the decomposition may involve the long-run 

(steady-state) targets (anchors) to which the corresponding elements converge in the long-run. The 

use of anchors is appealing since they stabilize the potential output revisions as they make the de-

trending procedures less sensitive to the data updates and new data inputs. In the case of TFP such 

anchors could be linked to the empirically testable hypothesis of sub-club convergence of the EU 

countries which is consistent with the multi-speed EU economic growth hypothesis and would result 

in country-specific convergence dynamics of the member states, rather than the deterministic 

(mechanical) output gap closure rules as in the EC’s CAM. 

Murray (2014) shows that the trend-cycle decomposition of the subcomponents in the UK’s case, in 

general, is equivalent or rival to the direct decomposition of the actual output. The advantage of the 

PF approach is that a practitioner can decompose the output gap into contributions from the labour 
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input22 and TFP gaps. There are two possible contribution decompositions (Murray 2014). The first 

breaks the output gap down into contributions from employment, average hours worked and labour 

productivity deviations from their trends. The more detailed decomposition additionally provides a 

practitioner with an indication of the TFP and capital intensity contributions to the output gap.  

Much of the criticism of the CAM and of applications of the PF approach comes from the pro-

cyclicality of the NAWRU estimates – essentially the level of unemployment keeping wage inflation 

constant (Casey 2018). Currently, the CAM production function obtains the implied trend 

unemployment rate based on a version of an accelerationist Phillips curve. Combining this with trend 

labour force levels gives trend employment levels, which together with trend average hours worked 

delivers the total potential level of factor inputs from the labour side (i.e., trend total hours worked).  

The estimation of the NAWRU has been a focal point for recent criticism of the production function 

approach employed under the CAM (Fioramanti 2016, Darvas and Simon 2015). The plausibility of 

results can, in some cases, be questionable in the absence of clear wage pressures. However, without 

observing the actual rate of unemployment that would be consistent with constant inflation, it is 

difficult to dispute the validity of such estimates. Perhaps more concerning is the extent to which the 

estimates can tend to track actual unemployment for some economies. Rather than identifying a 

persistent trend unemployment rate, the NAWRU appears to more closely approximate the actual 

unemployment rate (Casey 2018).  

Casey (2018) also points to the possibility that the standard Phillips curve approach (used in the 

CAM) on which NAWRU estimates are grounded could be extended. Recent decades have seen 

inflation become less sensitive to unemployment changes. One reason for this may be that inflation 

expectations have become better anchored. The presence of credible inflation-targeting central banks 

is an often cited reason for this anchoring.  

Finally, a further issue is the influence of migration flows on estimates of potential output (Casey 

2018). Net inward migration can boost labour inputs and hence potential output estimates in the PF 

approach. However, these flows can also dampen the traditional Phillips curve relationship between 

output (or unemployment) and inflation. This dampening effect arises due to the additional labour 

supply prompted by migration, which can serve to limit the expected inflationary pressures that might 

arise when unemployment is low. In turn, this can add to difficulties in discerning a stable level of 

unemployment at which inflation does not change (the NAWRU) and, hence, in distinguishing 

between cyclical and trend developments. 

In conclusion, it seems reasonable to practitioners in EU IFIs that the role of the production function 

may be more suited to long-run issues rather than short/medium term issues. This could prompt a two-

way methodology: long-term potential output estimates based on the production function approach 

(more affine to growth accounting) and medium-term output gap estimates based on semi-structural 

multivariate time series models. The first approach goes from the distant future (e.g., 20 years or more 

ahead) to the present while the second one goes from the present to the medium-term (e.g., up to 5 

years) targets. 

                                                      

 

22 Although capital and population gaps are conventionally assumed to be zero, a practitioner may relax these assumptions. 

Indeed, since the capital and labour for small open economies are highly mobile these results in investments and labour force 

migration waves to actually impact the changes in the potential output. This is evident in the recent boom-bust cycle case for 

the most of the EU economies.  
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Mixing things up 

Fiscal policy formulation and assessment in real-time requires forecasting the output gap at the end-

of-sample and onwards. This task can be performed in several ways, depending on the suite of models 

available to estimate the output gap and the range of available forecasts of the variables used as inputs 

by the different models. A model (or a procedure) designed to estimate the output gap can be 

considered as a transformation of some observable variables (inputs) that generate a decomposition of 

the observable GDP into a trend component (the potential output) and a cyclical component (the 

output gap), which could be described by a generic function: 

𝑂𝐺𝑡,𝑗 = Ψ𝑗(𝑦𝑡 , 𝑋𝑡,𝑗), (55) 

 

where 𝑡 denotes time ranging from 1 to 𝑇; Ψ𝑗 is a model (or a particular method) used to estimate the 

output gap (𝑗 = 1, 2, … , 𝐽); 𝑦𝑡is the observed actual output; 𝑋𝑡,𝑗 is a subset of 𝑘𝑗 variables that are used 

as inputs of the procedure, the size and composition of which may vary according to the model 𝑗, e.g. 

for univariate methods the subset is empty;  𝑂𝐺𝑡,𝑗 is the output gap estimated by the method 𝑗. 

In the context of equation (55), forecasting the output gap ℎ steps ahead means generating estimates 

above 𝑇, including the nowcasts for the current year T: 

𝑂𝐺𝑓,𝑗 = (𝑂𝐺𝑇,𝑗, 𝑂𝐺𝑇+1,𝑗, … , 𝑂𝐺𝑇+ℎ,𝑗), (56) 

 

where 𝑓 corresponds to a particular forecasting scenario (𝑓 = 1, 2, … , 𝐹). For any fixed method 𝑗 a 

practitioner could actually apply two alternative forecasting procedures each of which generates a 

within uncertainty range, or the uncertainty associated with the model inputs: 

(a) An explicit model-based or input-based perspective (e.g., a MUC model) and external 

projections of the inputs �̂�𝑡 and �̂�𝑡,𝑗, where 𝑡 = 𝑇, 𝑇 + 1,… , 𝑇 + ℎ. For example, such 

external projections could follow from an independent economic development scenario used 

to prepare budgetary plans of the general government. Then, the model-based procedure 

yields standard errors of the output gap forecasts as a by-product of running the Kalman filter 

(Kalman 1960).  

(b) An implicit output-based perspective, when using alternative projections of the inputs (e.g. 

alternative GDP projections provided by the Consensus) a practitioner generates a set of 

different output gap forecasts. Then any statistic (e.g., mean, median, middle of the range) 

define the point estimate for the output gap and their standard deviation (or median absolute 

deviation) can be used to set an uncertainty range. In other, words the Consensus uncertainty 

is translated into within uncertainty range for a particular method. 

Assume that in total 𝐹 different input scenarios exist defined by either (a) or (b) and each of the 

alternative scenarios is applied for a suite of 𝐽 models. Then, for each alternative set of inputs been 

fixed a practitioner could compute a between uncertainty range, or the uncertainty associated with the 

model selection, including the parameter uncertainty (e.g., the choice of a penalty parameter for the 

HP filter). Both types of uncertainty ranges then could be placed into a two-way uncertainty table 

(Table 2), the core of which is a 𝐹 × 𝐽 matrix of alternative point estimates of the output gap for a 

given year 𝑡. Table 2 quantifies at the same time the model uncertainty forming a between uncertainty 

range (reading it column-wise) and uncertainty about the inputs forming the within uncertainty range 

(reading it row-wise). The summary estimates, 𝑂𝐺̅̅ ̅̅ ⋅,⋅and 𝜎(𝑂𝐺⋅,⋅), are computed using all the entries of 

the table. 
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Table 2 – Uncertainty table for a given year 𝑡. 

  Model, 𝑗   

A
lt

er
n

at
iv

e 

in
p

u
ts

, 
𝑓

 

 1 2 … 𝐽 Mean Std. dev. 

1 𝑂𝐺1,1 𝑂𝐺1,2 … 𝑂𝐺1,𝐽 𝑂𝐺̅̅ ̅̅ 1,⋅ 𝜎(𝑂𝐺1,⋅) 

2 𝑂𝐺2,1 𝑂𝐺2,2 … 𝑂𝐺2,𝐽 𝑂𝐺̅̅ ̅̅ 2,⋅ 𝜎(𝑂𝐺2,⋅) 

… … … … … … … 

𝐹 𝑂𝐺𝐹,1 𝑂𝐺𝐹,2 … 𝑂𝐺𝐹,𝐽 𝑂𝐺̅̅ ̅̅ 𝐹,⋅ 𝜎(𝑂𝐺𝐹,⋅) 

Mean 𝑂𝐺̅̅ ̅̅ ⋅,1 𝑂𝐺̅̅ ̅̅ ⋅,2 … 𝑂𝐺̅̅ ̅̅ ⋅,𝐽 𝑂𝐺̅̅ ̅̅ ⋅,⋅  

 Std. dev. 𝜎(𝑂𝐺⋅,1) 𝜎(𝑂𝐺⋅,2) … 𝜎(𝑂𝐺⋅,𝐽)  𝜎(𝑂𝐺⋅,⋅) 

Source: the Network of EU IFIs. 

 

 

Computing the table can be quite cumbersome in practice, especially if the model-based approach (a) 

is used because numerical methods (e.g. Monte Carlo) are required to implement it. Therefore, in a 

few examples, where the suite of models is used, the practical solution is to consider just the between 

uncertainty range that, without loss of generality, is computed for the first row of alternative inputs. 

The first approach suggested in Murray (2014), Ódor and Kucserová (2014) is to consider just the 

arithmetic averages of the between uncertainty range (𝑂𝐺̅̅ ̅̅ 1,⋅) for each given year. Another simple 

adjustment of the point estimates is to change the mean statistic into any other parametric or non-

parametric estimate of the central point of the between uncertainty range. For example, such statistics 

could be a median, a mid-range – an arithmetic average of minima and maxima values of estimates 

produced under each method in each period (Casey 2018), a middle of the interquartile range, etc. The 

statistic suggested by Casey (2018) is useful for several reasons: (i) it is robust to overuse of a 

particular method (e.g. a production function approach as in Ódor and Kucserová (2014), or various 

modifications of the MUC models); (ii) it is simple to compute and (iii) it has an intuitive 

interpretation. On the other hand, mid-range estimates, as they are determined by estimates at the 

upper- and lower-ends of the range of models selected, may miss out on important dynamics of 

models inside of the range. Outliers may also have an undue bearing on mid-range estimates. 

However, neither a simple arithmetic mean, nor the mid-range statistic incorporates a model selection 

criteria (for instance, in terms of necessary and sufficient conditions for the “beauty contest” in Table 

1) or some likelihood notions similar to Bayesian model averaging.  

Ultimately, any model combination method will have advantages and disadvantages. It’s important 

that IFIs keep some sight and expert judgement of the individual models as well, at least in their 

internal deliberations.    
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Nominating the winner 

In the recent years, the view of different EU IFIs seems to converge that it is best to use many 

alternative methodologies jointly for comparison and assessment. This underlies, for example, the 

‘Suite of Models’ approach by Casey (2018) or the ‘Estimate Combination Approach’ by Ódor and 

Kucserová (2014) or a recent schematic representation provided by Cuerpo, Cuevas and Quilis 

(2018). In the latter study, the authors classify the existing methods and their main challenges in the 

form of a trilemma: on the three sides of the triangle, they respectively set three limiting modelling 

cases, namely DSGE models, Univariate Filters and Production Function Methods. On the corners of 

a triangle in Figure 9, the authors set three optimality criteria: statistical goodness, economic 

soundness and transparency from a user perspective. An inner area of the triangle, called ‘optimality 

area’, represents modelling options that can combine the merits from all three aforementioned 

approaches. The authors propose a multivariate unobserved components (MUC) model described by 

(40) and (41) that, they believe, falls within this area. It serves as a computationally less complex 

alternative to the ‘suite of models’, where the specific theory is selected and validated through the 

proposed ‘beauty contest’ approach.   

Following Cuerpo, Cuevas and Quilis (2018), 

Table 3 collects a number of studies that fall 

into the categories classified by these authors, 

adding some extra optimality criteria. Given 

the many variants of models falling in the 

same category and the country-specific context 

they are often applied to, it is difficult to reach 

quantitative results. Comparisons are therefore 

rather qualitative, summarizing a general view 

of the relative performance of each category 

across the various criteria. 

Table 3 reveals that there is no uniformly the 

best method and none of the methods takes 

priority other the rest in all aspects. Indeed, 

different approaches or their groups employ 

explicitly or implicitly different assumptions, level of complexity, the stability of estimates and 

balance between theoretical and empirical adequacy. The trade-offs between Cuerpo, Cuevas and 

Quilis (2018) defined trilemma imply that a practitioner has to choose the subjective combination of 

features he would like a preferred method or the suite of methods to possess. The least demanding 

univariate methods are advantageous in terms of transparency but suffer in terms of end-point biases 

and lack of theoretical story behind the scenes. A richer story typically comes at the cost of increased 

complexity and not necessarily resolves the end-of-sample issues as in the case of production function 

approach applied following the CAM. Whilst statistical goodness in terms of lower revisions and 

better detection of essential growth cycle’s turning points comes at the cost of reduced transparency 

and theoretical adequacy. On top of that, a sufficient condition for the cycle is given by the ‘smell 

test’ as judged by the policy maker (Cuerpo, Cuevas and Quilis 2018). 

 

 

  

Figure 9 – Optimality necessary requirements 

 

 

Source:  Cuerpo, Cuevas and Quilis (2018) 
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Table 3 – Comparison of different estimation approaches. 

 UF MUF PF DSGE 

Indicative Studies Ódor and Kucserová 

(2014), Murray 

(2014), Casey (2018) 

Frale and De Nardis 

(2017), Casey (2018), 

Cuerpo, Cuevas and 

Quilis (2018) 

Havik, et al. (2014), 

Ódor and Kucserová 

(2014), Murray (2014), 

Casey (2018) 

Vetlov, et al. (2011) 

Approach HP filter, PC filter, CF 

filter, BN filter, UC 

model and TC filter 

Bivariate PC filter, 

MUC, PCA, a suite of 

models 

Production function 

(the CAM) 

General equilibrium 

model 

Economic soundness 

Theory/empirical 

adequacy balance   

Statistical Statistical – theory 

(Okun’s law, (N)KPC, 

absorption cycle,  

financial cycle, etc.) 

Neoclassical supply-

side driven growth 

theory – statistical 

Micro-founded general 

equilibrium theory – 

statistical 

Consistency with 

stylized facts 

Low Medium Medium – high High 

Statistical goodness 

State-space 

representation 

Yes, but for CF filter Yes for MUC, no for 

PCA and suite of 

models 

Yes (at components 

level) 

No 

Stability of Estimates  Low (HP, PC, end-

point, omitted variable 

biases) – medium 

(UC) 

Medium Low (end-point, 

omitted variable 

biases) 

– 

Conformity with 

Business Cycles 

Chronologies 

Low – medium Medium  Low – medium – 

Transparency 

Computational 

complexity 

Low (HP, PC, BP 

filters) – medium (BN 

filter, UC, TC filter) 

Medium – high (a 

suite of models) 
High High 

Analytical complexity  Low  Medium High High 

Data requirements Low Medium – high (a 

suite of models) 

High High 

Robustness to Pre-

processing (seasonal 

adjustments, outliers) 

Low Medium due to 

structural constraints  

Low at components 

level – medium at an 

aggregate level 

High 

Easy to include 

forecasted inputs 

Yes Yes Yes Yes 

Source: the Network of EU IFIs. 

 

To sum up, it seems prudent to consider various methods; and assess the robustness of inference to the 

chosen detrending method on a country-specific basis (Mazzi, Ozylidririm and Mitchell 2017). While 

timely decisions require policymakers to focus on a particular measure, the credibility of the decisions 

gains in solidity as different measures confirm the same message (Álvarez and Gómez-Loscos 2017). 

This is especially important in the context of the existing fiscal framework. 
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Concluding remarks 

The objective of this paper was to review the conceptual and methodological issues of the potential 

output and the output gap estimation from the perspective of a fiscal authority and an independent 

fiscal institution.  

Conceptually, the focal point of the potential output and the output gap estimation is twofold. First, 

we are interested in the growth cycle – the difference between actual output and potential output 

expressed as a per cent of potential output, which is then used to cyclically adjust various general 

government’s fiscal indicators. Second, we are interested in long-term projections of potential output 

growth: an essential input into public debt sustainability analysis. This can also assess, for instance, 

the impacts of population ageing on the general government budget and on the real economy. In 

designing a suite of models, a practitioner must be aware of both goals. This calls for a consideration 

of structural and statistical methods as complementary tools rather than as substitutes in the “horse 

race” fashion.  

The non-self-correcting Keynesian theory that allows for an active countercyclical policy intervention 

is a mainstay in terms of modern macroeconomics and the driving forces of growth cycles. Implicitly, 

the mere existence of IFIs as fiscal watchdogs implies a view in which fiscal issues (and fiscal policy) 

matters a lot. This view is close to a Keynesian perspective, in a broad sense. On the other hand, the 

production function approach follows the neoclassical growth theory grounded in the fiscal policy 

ineffectiveness and is primarily concerned about long-term growth. Fiscal authorities setting their 

budgetary plans are (or have to be) more concerned about sustainability. This means focusing on the 

medium- to long-term concept of fiscal space rather than elimination of short-run inflationary 

pressures. Blindly mimicking the central bank approaches may mislead fiscal authorities and IFIs in 

reaching their own objectives, not to mention the available range of fiscal policy instruments: tax 

rates, expenditure components (both as final consumption and productive investment) and various 

transfers. 

The data used for output gap estimation can come from several sources. It may cover external, 

internal, fiscal, and financial variables that correspond to different sources of imbalances in the 

economy. A key concern of IFIs is an appropriate macroeconomic aggregate of actual output that is 

often country-specific. The prevalent real GDP could be changed to GNI or GVA net of particular 

subcomponents not related to the domestic cyclical fluctuations or that experience significantly lower 

cycles (oil production, multinationals, non-market sector, etc.).  

The output gap estimates are surrounded by considerable uncertainty originating from both the 

observed data revisions and estimates of the unobserved potential output. The uncertainty stems from 

three main sources: model uncertainty both within a particular method and between different 

approaches; data uncertainty associated with the data revisions and methodological changes in 

statistical data definitions; and end-of-sample uncertainty that reflects the differences between one-

sided (ex-ante, concurrent) and two-sided (ex-post, historic) estimates.  

Performance assessment is based on the trade-off between the stability of the real-time estimates in 

the sense of small ex-post revisions at the end-of-sample; and the plausibility of the estimates with 

hindsight. To maintain the credibility of the output gap estimates in the fiscal framework context, it is 

recommended to avoid hikes in the revisions of the output gap estimates, especially in the short-term 

horizon. This is why the end-point stability of the revisions has to be a primary concern for the EU 

countries. On top of that, IFIs have to judge the methods by considering the general plausibility of the 
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output gap estimates – an intuitive “smell” test or country-specific narrative approach, keeping an eye 

on the descriptive statistics of their revisions. A comprehensive selection method is a “beauty contest” 

that detects an optimal model as the one balancing the set of the statistical-based necessary and the 

economically and policy-oriented sufficient conditions. 

There are many different methods through which one can conduct a trend-cycle decomposition and 

none of them are necessarily superior to others. Trend-cycle decomposition methods can be grouped 

into several overlapping categories highlighting their particular features: (a) parametric, semi-

parametric and non-parametric; (b) univariate and multivariate; (c) statistical, semi-structural and 

structural; (d) linear and non-linear. All these categories reflect particular trade-offs that a practitioner 

faces while selecting a country-specific method that wins a domestic “beauty contest” or a “horse 

race”. Besides, in a diverse economic world, any commonly agreed approach eventually requires 

addressing country-specific issues (Ódor and Jurašekova Kucserová 2014). The view of different EU 

IFIs seems to converge on the view that it is best to use many alternative methodologies jointly for 

comparison and assessment. This leads one to propose the use of a suite of models approach.  

In solving the trilemma problem, an agreeable method should achieve three necessary conditions: 

economic soundness, statistical goodness and transparency. On top of this, a sufficient condition for 

the final estimate of the cycle is given by the smell test, often implemented by policymakers and a 

must-have for IFIs (Cuerpo, Cuevas and Quilis 2018). A practitioner has to choose the subjective 

combination of features he would like in a preferred method or suite of methods. The least demanding 

univariate methods are advantageous in terms of transparency but suffer in terms of end-point biases 

and a lack of theoretical narrative. However, more advanced methods do not necessarily resolve the 

end-of-sample problem. Since every cycle is different keeping analysis simple and with a clear 

narrative is problematic in a complex world. Designing a “least bad” solution among a host of 

mediocre choices might be the only realistic goal for the problem of estimating potential output 

(Blagrave, et al. 2015). The suite of models approach seems a reasonable response to these 

considerations.  

There are several interesting directions for IFI practitioners to consider as takeaways for future 

research, following Ódor and Kucserová (2014).. First, one could explore an asymmetric loss function 

of fiscal authorities and IFIs, resulting from unequal costs of falsely launching correction mechanisms 

when these should not be activated (and not activating them when there is, in fact, a significant 

deviation). Second, one could consider more sophisticated ways to combine the estimates from the 

suite of models. Third, further research on how best to incorporate within model uncertainty could be 

explored, when producing uncertainty ranges. Fourth, the inclusion of other output gap estimation 

methods (wavelets, regime switching models, real business cycle and DSGE models) into the suite of 

models that are not currently applied by the Network of EU IFIs is worth exploring. Fifth, one could 

consider bias correction mechanisms that may follow from the analysis of one-sided and two-sided 

estimates. In the case of systematic bias, it is worth considering how this may create additional fiscal 

space to absorb negative surprises.  
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Annexes 

Appendix A. Data collection 

Method Data required Category Notes 

Univariate filters GDP / GVA data 

 

GDP and output  

 Domestic GVA GDP and output Other similar measures could be used 

in cases where a long time-series is 

not available 

 GVA excluding 

volatile sectors 

GDP and output In the UK output gap models are 

currently based on a measure of GVA 

excluding the volatile North Sea oil 

sector 

Multivariate 

filters 

Real credit 

growth 

Financial markets 

and asset prices 

 

 Real interest rates Financial markets 

and asset prices 

 

 Real effective 

exchange rate 

Financial markets 

and asset prices 

 

 House prices Financial markets 

and asset prices 

 

 Housing 

completions 

GDP and output  

 Inflation Prices  

 Domestically 

generated 

inflation 

Prices  

 Inflation 

expectations 

Prices Useful if wanted to estimate Phillips 

curve as part of this work 

 Unemployment 

rate 

Labour market  

 Current account GDP and output  

 Asset/commodity 

prices 

Financial markets 

and asset prices 

Oil prices in resource-dependent 

countries, or asset prices in 

economies with large financial sectors 

 Money supply Financial markets 

and asset prices 

 

 Gross national 

savings 

GDP and output  

Public borrowing 

and debt 

Fiscal Fiscal variables could be useful in 

determining which version of the 

output gap is most important for the 

public finances 

 Taxes and Fiscal  
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Method Data required Category Notes 

benefits 

 Investment in 

equipment / 

machines 

GDP and output  

 Investment in 

construction 

GDP and output  

Production 

function 

Net capital stock GDP and output  

 Net capital stock 

excluding 

dwellings 

GDP and output In the UK dwellings are excluded: 

questionable whether it should be 

counted as productive capital, but also 

the issue raised in Casey (2018) about 

house price bubbles distorting the 

levels 

 Trend 

employment 

Labour market Could be obtained by a combination 

of trend participation and an estimate 

of the NAIRU, or directly, e.g. by 

applying a filter to the actual 

employment rate 

 Trend average 

hours 

Labour market  

 Net migration Labour market Just adding in case we wanted to look 

into the extent to which changes in 

migration flows affect some of these 

models. 

Principal 

components 

analysis 

Capacity 

utilisation 

measures 

GDP and output  

 Recruitment 

difficulties 

indicators 

Labour market  

 Earnings growth Labour market  

 New car 

registrations 

GDP and output  

Sector-weighted 

cyclical 

indicators 

analysis 

Sectoral shares GDP and output Used to in some models to weight the 

different sectors when forming a view 

of the output gap for the whole 

economy 
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Appendix B. Kalman filter and Kalman smoother 

Filtering is one of the methods applied to assess the cyclical information from actual data – it directly 

extracts the cyclical component of the series by removal of trends and isolation of other recurring 

cycles.23 In particular, state-space models and Kalman filter techniques play a special role in trend-

cycle decompositions. In these approaches, the output gap is treated as a latent variable (a variable 

that can be estimated but not observed) and many of them use the unobserved components model 

following Harvey (1985). Similar to (1) consider a generic decomposition that represents the 

dependent time-series variable 𝑦𝑡 into a set of the unobserved components in the (log-) additive form: 

𝑦𝑡  =  𝑦𝑡
∗  + 𝑐𝑡  +  𝛾𝑡  + 𝜈𝑡  +  𝜀𝑡 , ∀𝑡 = 1,… , 𝑇, (57) 

where 𝑦𝑡
∗ is a slowly-varying unobserved component (trend); 𝑐𝑡 is a periodically-recurring unobserved 

component (cycle); 𝛾𝑡 denotes a periodic unobserved component (season); 𝜈𝑡 is an unobserved 

autoregressive component (inertia); and 𝜀𝑡 is an unobserved irregular component (disturbance). 

In a structural time-series (STS) or unobserved component (UC) model, all right-hand side 

components are modelled exceptionally as stochastic unobserved processes having a direct (semi-

structural) interpretation. By their nature, following BN decomposition, these components can be 

further split into a deterministic function of time (e. g., polynomials with dummy variables) or 

stochastic processes. Each component of the UC model given by the equation is modelled in state-

space form and estimated using Kalman filter. For instance, the trend component,𝑦𝑡
∗ , can be modelled 

either deterministically as 

𝑦𝑡
∗  = 𝜏 ⋅ 𝑡 + 𝜀𝑡, with 𝜀𝑡~𝑁𝐼𝐷(0, 𝜎𝜀

2), or stochastically by random walk plus noise, giving rise to the 

so-called local level or random walk with noise model (Rummel, 2015). 

Stochastic filters may be best used within a production function framework, rather than as stand-

alone. Positive examples of how to design flexible economic approaches to potential output are: 

1) Estimating time varying NAIRUs through Kalman filters;  

2) Filtering total factor productivity and participation rates.  

Filtering such individual components of potential output should help avoid the kind of intense 

endpoint biases observed when applied directly to ‘politically charged’ GDP series.  

A wide range of time series models, including the classical linear regression model and ARIMA 

models, can be written and estimated as special cases of a state-space specification. The Kalman filter 

algorithm has been used, among other things, to compute exact, finite sample forecasts for Gaussian 

ARMA models, multivariate (vector) ARMA models, MIMIC (multiple indicators and multiple 

causes), and time-varying (random) coefficient models. 

The meaning of filter is to transform a function of a time series into another series. This representation 

of the model is also known as a state-space system, with the first equation representing the signal 

equation (the equation of the observable variables) and the second representing the state equation (the 

equation of the unobservable variables). The Kalman filter (Kalman 1960) is an algorithm for 

generating minimum mean squared error forecasts in a state-space model. It is a recursive algorithm 

                                                      

 

23 Even after the separation of trend from cycle is accomplished, additional steps may be necessary to isolate cycles 

according to the frequency of their recurrence (e.g., patterns of fluctuation that recur at classical-cycle frequencies and other) 

(Rummel, 2015). 
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for sequentially updating the one-step-ahead estimate of the state mean and variance are given the 

new information.  

Consider the MUC represented in the multivariate Gaussian form (40) and (41) based on Durbin and 

Koopman (2012). Recall, that: 

Signal: 𝑦𝑡 = 𝐻(𝛼)𝑆𝑡 + 𝜈𝑡 , 𝜈𝑡~𝑁𝐼𝐷(0, Σ𝜈), 

State: 𝑆𝑡 = 𝐹(𝜙)𝑆𝑡−1 + 𝑢𝑡, 𝑢𝑡~𝑁𝐼𝐷(0, Σ𝑢), 𝑆1~𝑁(𝑎1, 𝑃1), 

where 𝑡 = 1, 2, … , 𝑇 denotes time, 𝑦𝑡 is a 𝑝 × 1 vector of 𝑝 observed endogenous variables and is 

called the observation (measurement or signal) vector; 𝑆𝑡 is a 𝑚× 1 vector of 𝑚 unobserved states 

and is called the state (transition) vector, the dynamics of which is represented as a first-order 

autoregression. The disturbance vectors 𝜈𝑡 and 𝑢𝑡 are assumed to be serially independent, with 

contemporaneous variance structure.  

Let us stack all model parameters 𝛼, 𝜙,  Σ𝜈 , Σ𝑢 into one vector 𝜃. Then, conditional on a particular 

realisation of the initial state vector 𝑆1 and assuming that the values of vector 𝜃 are known, the 

Kalman filter can be used to estimate the state vector and its corresponding standard error.  

In practice, the vector 𝜃 is unknown and must be estimated from the sample. Fortunately, the state 

space format and the Kalman filter provide a feasible way to evaluate the likelihood function and, 

using numerical methods, to maximize it. The parameters 𝜃 could be also assessed by applying 

Bayesian methods and/or calibrated. 

Once the 𝜃 parameters have been estimated, the Kalman filter is run to derive new initial conditions 

by means of backcasting (i.e., forecasting observations prior to the first observation). This process of 

backcasting can be done just by projecting forward the model using the reversed time series. In this 

way, a new set of initial conditions exerting a limited influence on the estimation of the state vector is 

derived by means of the Kalman filter. The complete algorithm can be stated as follows. 

• Initialization 1: Set initial parameters: 𝜃0. 

• Initialization 2: Set initial conditions: 𝑆1,0. Initial conditions for the state vector are provided 

using a diffuse prior centred on zero with an arbitrarily large VCV matrix.  

• Likelihood computation: Conditioned on the initial parameters and the initial conditions, we 

run the Kalman filter to compute the likelihood. 

• Likelihood maximization: The maximum likelihood estimation (MLE) is implemented. The 

definition of the objective function incorporates the constraints that ensure the non-negativity 

of the variances and the stationary nature of the AR(2) parameters for the stochastic cycle. 

• Re-initialization: The use of diffuse initial conditions to run the Kalman filtering is a simple 

device to start its algorithm but may generate some sensitivity in the estimates of the state 

vector. To reduce the sensitivity for these estimates, first generate backcasts (e.g., forecasts of 

observations prior to the first observation). This process of backcasting is done just by 

projecting forward the model using the reversed time series. In this way, a new set of initial 

conditions 𝑆1,1 is obtained that exerts a limited influence on the estimation of the state vector 

as derived by means of the Kalman filter. 

A Kalman filter produces one-sided or concurrent estimates of the state vector, while a Kalman 

smoother is associated with two-sided or historic estimates of the state vector. 
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One-sided (concurrent) estimates of the state vector 

The one-sided (or concurrent) estimates of the state vector are obtained running recursively the 

Kalman filter from 𝑡 = 1, 2, … , 𝑇 one-step forward in time. To estimate the state vector at time 𝑡 = ℎ 

the method considers only the information available from 𝑡 = 1 to 𝑡 = ℎ and is very useful to analyse 

the state of the system on a real-time basis. 

In the nutshell, using the observed signal variables and some initial assumptions about state mean and 

variance values, the Kalman filter first calculates one-step-ahead estimates of state values 𝑆𝑡|𝑡−1 and 

variances 𝑃𝑡|𝑡−1: 

𝑆𝑡|𝑡−1 = 𝐸𝑡−1(𝑆𝑡), (58) 

𝑃𝑡|𝑡−1 = 𝐸𝑡−1[(𝑆𝑡 − 𝑆𝑡|𝑡−1)(𝑆𝑡 − 𝑆𝑡|𝑡−1)′], (59) 

that gives an introductory (a priori) projection of the state variable and variances, when 𝑦𝑡 is not 

known. The observable data for the next period is then used to update the projections (a posteriori) 

from the first step, giving more weight to components with lower variances and considering 𝑦𝑡 is 

observed. This a posteriori estimate is a linear combination of an a priori estimate of the state and the 

measurement residual (innovation) from the corresponding signal equation: 

�̃�𝑡 = 𝑆𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 −𝐻(𝛼)𝑆𝑡|𝑡−1),  (60) 

where 𝐾𝑡 is a gain (blending factor) that minimizes a posteriori error covariance: 

�̃�𝑡 = 𝐸𝑡[(𝑆𝑡 − �̃�𝑡)(𝑆𝑡 − �̃�𝑡)′] ⇒ 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻(𝛼)
′(𝐻(𝛼)𝑃𝑡|𝑡−1𝐻(𝛼)

′ + Σ𝑢)
−1

, (61) 

from which follows that a posteriori update is heavier the smaller the variance of signal equations Σ𝑢 

and lighter when the 𝑃𝑡|𝑡−1 approaches zero. The a posteriori estimates are then used to compute the a 

priori projections for the next period: 

𝑆𝑡+1|𝑡 = 𝐹(𝜙)�̃�𝑡, (62) 

𝑃𝑡|𝑡−1 = 𝐹(𝜙)�̃�𝑡𝐹(𝜙)
′ + Σ𝜈. (63) 

And the process is recursively iterated until the end-of-sample 𝑇 is reached. 

Two-sided (historical, smoothed) estimates of the state vector 

The Kalman filtered estimates of the past data can be updated if new data becomes available (Van den 

Brakel, et al. 2017). This procedure is referred to as Kalman smoothing. In addition to one-sided 

Kalman forward filtering step, the two-sided (or historical) estimates of the state vector are obtained 

running recursively the Kalman filter from 𝑡 = 𝑇 to 𝑡 = 1 (backward in time), using as initial 

conditions the terminal concurrent estimates obtained in the previous step. This process considers all 

the information available from t = 1 to 𝑡 = 𝑇 to estimate the state vector at any time 𝑡 = ℎ, 1 ≤ ℎ ≤

𝑇. In other words, the smoothed estimate for the state vector for period ℎ also accounts for the future 

information after time period ℎ.  

Smoothing uses all of the information in the historical time series to provide smoothed estimates of 

the states and smoothed estimates of the state variances. From an econometric view, one-sided and 

two-sided estimates play a complementary role. The first one serves as the starting point for the 

second and provides a benchmark to quantify the additional precision that the full sample introduces. 

Note that two-sided estimates are more precise because they incorporate all the available information 
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from 𝑡 = 1 up to time 𝑡 = 𝑇 to estimate the state vector in any intermediate point and, due to their 

symmetric nature. Note that this symmetry is due to the fact that the filter runs backwards from 

estimates derived forward. In this way, two-sided filtering does not introduce any form of phase-shift 

in the estimates. 

However, a two-sided estimate is not useful for real-time analysis since it incorporates information 

not available a 𝑡 = ℎ to evaluate the state of the system at that time and hence introduces some form 

of hindsight bias – a direct consequence of the fact that the ends-of-sample however the one-sided and 

two-sided estimates are identical. This is particularly important when dealing with output gap 

estimation because its main use is related to the assessment of the fiscal policy stance. In practice, 

fiscal policy at time 𝑡 is primarily determined using only information available up to time 𝑡. 

Therefore, in a real-time application, it is sufficient to run Kalman filter only. 

Of course, this pre-eminence does not imply that two-sided estimates are irrelevant. Quite the 

contrary, they serve to produce useful measures of uncertainty and to gauge the impact of the full 

sample on the estimates of the output gap, especially around the turning points. 

 


